

JORNADAS DE ACTUALIZACIÓN TÉCNICA EN PUENTES

11 y 12 de julio 2017 - Auditorio A.A.C.

INSTITUCIONAL

ACTIVIDADES

PUBLICACIONES

CONGRESOS Y SEMINARIOS

LINKS

NOTICIAS DEL SECTOR

NOVEDADES

CONTACTO

La Asociación Argentina de Carreteras llevará a cabo conjuntamente con el CIRSOC unas

"JORNADAS DE ACTUALIZACIÓN TÉCNICA EN PROYECTOS Y CONSTRUCCION DE PUENTES",

durante los días martes 11 y miércoles 12 de julio del presente año entre las 9:00 y 18:00 horas en la sede de la Entidad.

La propuesta de estas Jornadas es interiorizar, a los distintos Organismos y profesionales que participan en la definición de proyectos y obras relacionadas con el tema citado, del estado de avance de las Normas en elaboración que permitirán actualizar y mejorar las existentes en esta materia; asimismo debatir profundamente con la mirada particular de cada profesional y técnico los temas planteados a los efectos de incorporar algunos comentarios vertidos en el debate.

JORNADAS DE ACTUALIZACIÓN TÉCNICA EN PUENTES

■ 11 y 12 de julio 2017 - Auditorio A.A.C.

(Paseo Colón 823 - 6º Piso)

		PRIMERA JORNADA						
	PRINCINA JOHNADA							
	8:30 a 9.15	ACREDITACIONES						
-	9:15 a 9:30	Bienvenida Guillermo Cabana						
	9:30 a 10:30	Presentación CIRSOC - CVF - Normas de Seguridad en la Argentin Marta Parmigiani - Hugo Naranjo - Roberto Carretero - Máximo Fioravanti						
	10:30 a 11:00	Coffee break						
	11:00 a 11:30	Filosofía, Estructura y Formato General de la Serie 800 Victorio Hemandez Balat - Tomás del Carril						
S	11:30 a 12:00	Criterios de Seguridad Raúl Bertero						
A D	12:00 a 12:30	Aplicación de los Criterios de Seguridad a Puentes - Calibración Juan Francisco Bissio						
	12:30 a 13:00	Preguntas y Comentarios						
	13:00 a 14:30	Almuerzo (libre)						
ACTIVIDADE	14:30 a 15:15	Estados Límite - Cargas y Combinaciones de Cargas Javier Fazio						
	15:15 a 15:45	Métodos de Cálculo - Métodos Áproximados Rogelio Percivati - Tomás del Carril						
	15:45 a 16:15	Coffee break						
DE	16:15 a 16:45	HAyP: Sistemas Puntal Tensor - Zona Local, etc. Juan Francisco Bissio						
0	16:45 a 17:15	Preguntas y Comentarios						
>	SEGUNDA JORNADA							
ATI	9:00 a 9.30	HAyP: Esfuerzos Normales - Segundo Orden Victorio Hernandez Balat						
TENTATIV	9:30 a 10:00	HAyP: Esfuerzos Tangenciales - Corte y Torsión Raúl Bertero						
TE	10:00 a 10:30	HAPyP: Corte por Fricción Victorio Hernandez Balat						
⋖	10:30 a 11:00	Coffee break						
ROGRAMA	11:00 a 11:30	HAyP: Pretensado y Pérdidas Rogelio Percivati						
3R/	11:30 a 12:00	Puentes Metálicos y Mixtos Gustavo Darín - Martín Polimeni						
	12:30 a 13:00	Preguntas y Comentarios						
~	13:00 a 13:30	Almuerzo (libre)						
<u>-</u>	13:30 a 14:00	Juntas y Apoyos Daniel Ortega - Tomás del Carril						
	14:00 a 14:30	Defensas Diego Cernuschi - Tomás del Carril						
	14:30 a 15:00	Fundaciones Juan Francisco Bissio						
	15:00 a 15:30	Estribos y Pilas Victorio Hernandez Balat						
	15:30 a 16:00	Preguntas y Comentarios						
	16:00 a 16:30	Conclusiones Tomás del Carril						
	16:00 a 16:30	CIERRE						

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

HISTORIA DEL DESARROLLO REGLAMENTARIO

CIRSOC SERIE 800

REGLAMENTO ARGENTINO PARA EL

DISEÑO DE PUENTES CARRETEROS JENTINA

Proyecto General y Análisis Estructural

HISTORIA DEL DESARROLLO

DE CARA

- ► Los Reglamentos registran la evolución del conocimiento técnico
- La interpretación correcta de toda propuesta requiere la ubicación de la misma en la historia de la evolución del conocimiento.
- ► En el caso de los PUENTES esa evolución se puede concentrar en el análisis estructural considerando al mismo parte esencial del conjunto.
- La ubicación cronológica de esta evolución se puede definir en términos de las fechas de los diversos Reglamentos y de la creación de los Entes que tuvieron a su cargo la redacción de los mismos.
- A su vez estas fechas coincidieron con modificaciones significativas en las hipótesis que se adoptan y se puede identificar a esos Reglamentos por esas hipótesis.
- En lo que sigue se efectuará una revisión de estas propuestas.

DE CARP

▶1963

- Esta fecha identifica al PRAEH (Proyecto de Reglamento Argentino de Estructuras de Hormigón)
- Institucionalmente el Ente Responsable fue un Centro de Investigación Temporario del INTI

DE CAR

- Con sustento en el CEB se introduce en nuestro medio el "cálculo a rotura" que se podría identificar mejor como la sustitución de la hipótesis de linealidad en la evaluación de la resistencia del hormigón armado y se modifica la forma de abordar la calificación del equilibrio.
- Si bien se tenía un conocimiento que no sustentaba utilizar las tensiones admisibles como herramienta para estimar la resistencia del hormigón la inercia intelectual de la matrícula llevaba a la defensa de la hipótesis de linealidad.

- Si bien en los países con desarrollo propio de investigación y conducta de registro y aplicación de las hipótesis básicas que hacen al accionar profesional, nuestro mercado de concurrencia intelectual condujo a las acciones individuales de tratar de recoger en nuestro medio esos antecedentes para aplicarlos. Así se registraban no sólo contradicciones sino competencias por la utilización de la aplicación más novedosa (porque otros no la poseían)
- El escenario era el típico que se genera cuando la información de la realidad supera a la de la norma del modelo que no la interpreta.
- Institucionalmente se aprecia también la forma en que el Estado, responsable de la seguridad de los habitantes, recurre a una organización atípica para encomendarle esta misión.
- Si bien introduce el concepto de estado límite para su definición utiliza un único coeficiente que si bien admite su variación la deja en manos de la responsabilidad de los que aplican el Reglamento.

DE CAR

- Es posible que los criterios que puedan haber estado en el terreno de lo observable fueron:
- Haber sustentado su redacción en Recomendaciones y no en un Reglamento de aplicación integral en un determinado medio que pudiera avalar los detalles propios de la aplicación en forma integral.
- Haber dejado el margen de seguridad confiado a la ponderación del accionar del Profesional que aplica el Reglamento.
- Haber encomendado la redacción a un cuerpo transitorio que no estaba en condiciones de dar respuesta a las necesidades propias de la actualización que un cuerpo de esta naturaleza requiere.
- ► El hecho de mantenerse como Proyecto y no como Reglamento en diversas jurisdicciones.

DE CARP

▶1982

La Norma DIN introducida diez años antes con una base racional e integral para la evaluación de las estructuras de hormigón armado y los problemas derivados de la aplicación del PRAEH, condujo al intento de generar la base de un Reglamento recurriendo a un Ente privado (IRAM), lo cual también derivó en objeciones diversas.

Surge el CIRSOC y así el primer Reglamento de Estructuras de Hormigón que da respuesta a los aspectos planteados en la filmina anterior pero afirmando la presencia del Estado en la materia de forma de regular una responsabilidad indelegable: la seguridad asociada a la ejecución de las obras.

Con el respeto al federalismo en la materia se arbitran los medios de participación que induzcan a la obtención del consenso que impone la Organización Nacional.

Es una evidencia más de la evolución del conocimiento en sus diversos aspectos

DE CAL

► DECADA DEL 90 (SIGLO PASADO) LRFD

DE CAP

Registra el efecto de la computación al acceso de los profesionales del medio que aprecian la posibilidad de acceder a criterios semi probabilísticos en el análisis estructural. Es oportunidad para la discusión de un cambio en la orientación reglamentaria de la predominancia europea se pasa a la norte americana.

Es el momento de seguir en Hormigón un cambio que había comenzado con las Estructuras Metálicas, sumado al efecto de "copiar" en forma integral un cuerpo reglamentario. Lo que había sido la réplica del cuerpo DIN alemán paso a ser el conjunto de normas propias de la técnica americana. Se puede identificar este cambio como el de la LRFD.

El sustento racional que suministra la separación de la incertidumbre propia del análisis estructural de la asociada a la resistencia de los sistemas justifica en este caso la convalidación de una nueva etapa de la evolución del conocimiento.

2005

El Reglamento de Hormigón señala un nuevo hito que lleva a la generalización del concepto del Estado Límite Último (ELU) y su separación del Estado Límite de Servicio (ELS) que se transforma en un nuevo objetivo de la formación del ingeniero: la incertidumbre como concepto destacable y la consecuente identificación de la diferencia entre el modelo y la realidad.

Lamentablemente queda una materia pendiente en el actual escenario de la evolución: reconocer la necesidad de poder actualizar la transformación de una Norma y luego ésta en un Reglamento sin esperar años de trámites administrativos. Cabe, al respecto, observar los procedimientos de otras culturas que se adaptan mejor a la velocidad de evolución del conocimiento.

La evolución no se detiene y sólo podemos estar seguros que el próximo cambio va a demorar menos que el anterior. Es imprescindible estar preparados tanto para la formación de futuros profesionales como para mejorar la eficiencia de nuestra actividad.

DE CA

Los PUENTES constituyen obras de infraestructura que se ubican en la jurisdicción de los Estados en que se divide la Organización Nacional. Es mínima la participación privada en esta condición.

La variedad de condiciones que se asocian a este tipo de obras no pueden ser contempladas por los Reglamentos que aplican a otras obras privadas o públicas. Es necesario contar con una Norma Específica.

Los Reglamentos existentes en el tema específico no han seguido la evolución reglamentaria que se ha descripto. Cabe preguntarse en que estado de la misma nos encontramos.

CIRSOC somete a discusión pública un Reglamento que recoge la experiencia acumulada en la materia como reflejo de la evolución del conocimiento. Se debe interpretar esta acción como la necesidad de recuperar conocimiento para consolidarlo.

Lo expuesto intenta sustentar el tiempo que dedicaremos a estas jornadas.

DE CARP

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

DE LOS OBJETIVOS GENERALES DE UN REGLAMENTO

REQUISITOS DE UNA OBRA VIAL

- Funcionalidad El Puente como un eslabón esencial del camino
- Seguridad Diseño geométrico con conceptos modernos Seguridad Estructural
- tema de c Durabilidad Asegurarla con eficaz y eficiente Sistema de Gerenciamiento de Puentes
- **Costos Totales Mínimos** Se trata de encontrar un diseño que minimice los costos anuales, considerando el monto de la Inversión Inicial y los costos de Mantenimiento y Conservación

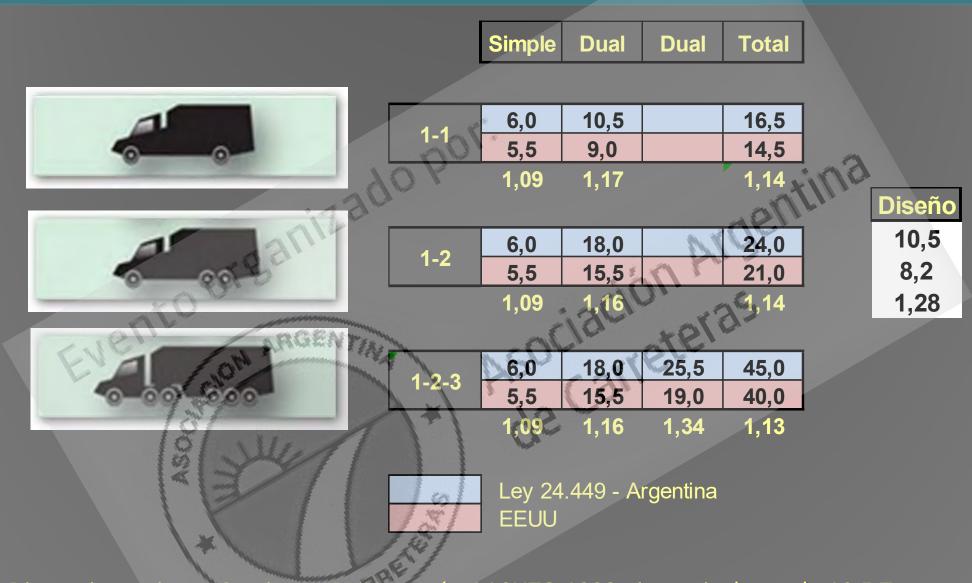
REQUISITOS BÁSICOS DE UN REGLAMENTO

Coherencia con el cuerpo reglamentario nacional

<u>conexo</u>: relacionado, vinculado, ligado, afín, enlazado <u>razonable</u>: lógico, racional, pertinente

- 1. La DNV obliga a dimensionar la estructura de la calzada con el método AASHTO 1993.
- 2. Para el diseño estructural CIRSOC aplica ACI y AISC.
- 3. CIRSOC 800 se basa en AASHTO LRFD Bridge Design Specification.

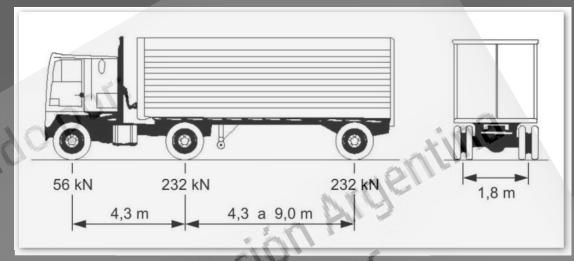
Adecuar los usos y costumbres locales - Mercosur



Ejemplo: control de Cargas en las rutas En Texas (EEUU), se detiene al vehículo por exceso en su Peso, luego:

- hasta 60 días de cárcel la segunda vez,
- hasta 182 días en la tercera incidencia

CARGAS de DISEÑO - COMPARACIONES

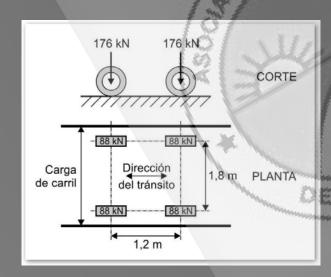


Dimensionamiento Camino — DNV - según AASHTO 1993 eje equivalente de 10,5 Ton EEUU - según AASHTO 1993 eje de 8,2 ton.

CARGAS de DISEÑO - COMPARACIONES

CAMIÓN DE DISEÑO

CIRSOC 5,71 ton


23,66 ton

23,66 ton

4ASHTO: 3,5

14,79 ton

14,79 tor

TÁNDEM DE DISEÑO

CIRSOC: 18 ton/EJE

AASHTO: 11 ton/EJE

FACTOR = 1,6

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

CIRSOC SERIE 800 ESTRUCTURA GENERAL Y FORMATO

FORMATO GENERAL DE LA SERIE DE REGLAMENTOS CIRSOC VIGENTES (LRFD)

FORMATO GENERAL DE LA SERIE DE REGLAMENTOS CIRSOC VIGENTES (LRFD)

Reglamento Argentino de Estructuras de Hormigón

Reglamento CIRSOC 201 Ministerio de Planificación Federal, Inversión Pública y Servicios Secretaría de Obras Públicas de la Nación

CAPÍTULO 9. REQUISITOS DE RESISTENCIA Y COM-PORTAMIENTO EN SERVICIO

Resistencia de Diseño \geq Resistencia Requerida $\phi S_n \geq 0$

•
$$U = 1,2 D + 1,0 E + f_1(L + L_r) + f_2 S$$

•
$$U = 0.9 D + 1.0 E + 1.6 H$$

$$(9-4)$$

$$(9-5)$$

$$(9-6)$$

$$(9-7)$$

FORMATO GENERAL DE LA SERIE DE REGLAMENTOS CIRSOC VIGENTES (LRFD)

Reglamento Argentino de Estructuras de Acero para Edificios

A.4. ACCIONES Y COMBINACIÓN DE ACCIONES

1,4 (D + F) (A.4.1)
1,2 (D + F + T) + 1,6 (L + H) + (
$$f_1$$
 L_r \acute{o} 0,5 S \acute{o} 0,5 R) (A.4.2)
1,2 D + 1,6 (L_r \acute{o} S \acute{o} R) + (f_1 L \acute{o} 0,8 W) (A.4.3)
1,2 D + 1,6 W + f_1 L + (f_1 L_r \acute{o} 0,5 S \acute{o} 0,5 R) (*) (A.4.4)
1,2 D + 1,0 E + f_1 (L+ L_r) + f_2 S (A.4.5)
0,9 D + (1,6 W \acute{o} 1,0 E) + 1,6 H (*) (A.4.6)
1,2 D + 1,6 L + (f_1 L_r \acute{o} 0,5 S \acute{o} 0,5 R) + 0,8 W (A.4.7)

Reglamento CIRSOC 301

Ministerio de Planificación Federal, Inversión Pública y Servicios Secretaría de Obras Públicas de la Nación

(A.4.7)

ESTRUCTURA GENERAL DE LA SERIE DE REGLAMENTOS CIRSOC 800 (LRFD)

CARRE

CIRSOC SERIE 800 - ESTRUCTURA GENERAL Y FORMATO

ESTRUCTURA GENERAL DE LA SERIE 800 (LRFD) Y DOCUMENTOS ACTUALMENTE EN DISCUSIÓN PÚBLICA

1. 2. 3. 4.	Introducción Proyecto general y características de ubicación Cargas y factores de carga Análisis y evaluación estructural	- CIRSOC 801
5.	Estructuras de hormigón	CIRSOC 802
6. 7. 8. 9. 10. 11.	Estructuras de acero Estructuras de aluminio Estructuras de madera Tableros y sistemas de tablero Fundaciones Estribos, pilas y muros Estructuras enterradas y revestimientos de túneles	En elaboración En elaboración
13.	Defensas y barandas <	CIRSOC 804
14.	Juntas y apoyos	En elaboración

IMPLEMENTACIÓN TAXATIVA DE ESTADOS LÍMITE

OS LÍMI) EVENTOOFE Cital Dis CARRE

El CIRSOC 801:

Estado límite ("Limit state") Condición más allá de la cual el puente o elemento deja de satisfacer los requisitos para los cuales fue diseñado

Se definen los siguientes cuatro tipos de estados límite que se desarrollarán en presentaciones posteriores:

CARRE

Estados límite de resistencia ("Strength limit states") Estados límite relacionados con la <u>resistencia y la estabilidad</u> durante la vida de diseño

Estados límite de servicio ("Service limit states")

Estados límite relacionados con <u>la tensión, deformación y</u> <u>fisuración, bajo condiciones normales de operación</u>. El estado límite de servicio se debe considerar como restricciones impuestas a las tensiones, deformaciones y anchos de fisura bajo condiciones ordinarias o normales de servicio

Estados límite correspondientes a eventos extremos ("Extreme event limit states")

Estados límite relacionados con eventos tales como <u>sismos,</u> <u>cargas de hielo y colisiones</u> de vehículos o embarcaciones, con períodos de recurrencia mayores que el período de diseño del puente

Estados límite de fatiga («Fatigue limit states)

Estados límite relacionados con la acción de cargas frecuentes y con la limitación de tensiones bajo ese tipo de cargas

LRFD - ESTADOS LÍMITE DE RESISTENCIA EVENTOOFS Cit-loh Col-loh

CARRE

FORMATO PARA ESTADOS LÍMITES DE RESISTENCIA

El formato general de la serie es el denominado LRFD:

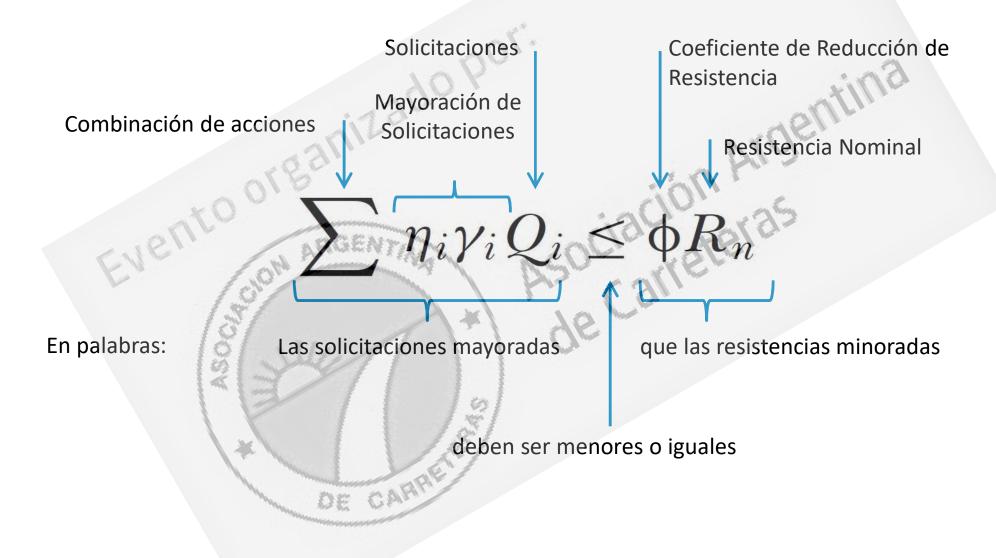
OE CARRI

L: Load

and

R: Resistance

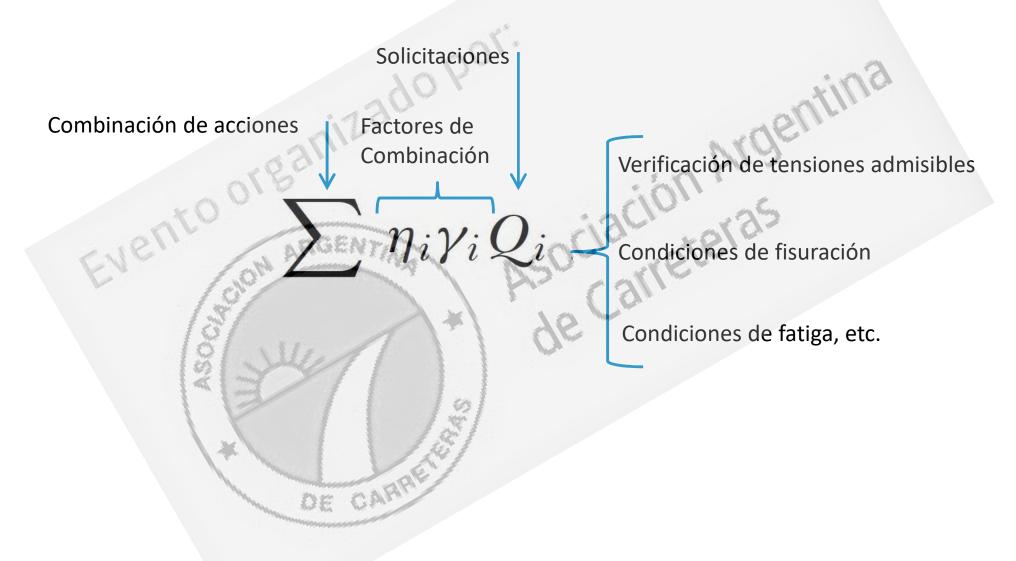
F: Factor


Design

Diseño mediante factores (coeficientes) de carga y resistencia

FORMATO LRFD (Estados límites de Resistencia)

ESTADOS LÍMITE DE SERVICIO Y FATIGA


CARRE

CIRSOC SERIE 800 - ESTRUCTURA GENERAL Y FORMATO

>>>

EXTENSIÓN DEL FORMATO A ESTADOS LÍMITES DE SERVICIO Y FATIGA

QUÉ PROVEE LA SERIE DE REGLAMENTOS?

En principio, todo lo necesario para verificar los estados límites propuestos, es decir:

- Cargas
- Procedimientos aceptados para pasar de cargas a solicitaciones
- Combinaciones de solicitaciones
- Coeficientes de reducción de resistencias
- Métodos para cuantificar las resistencias nominales

A QUÉ SE ESTÁ HACIENDO REFERENCIA AL HABLAR DE «CARGAS»?

3.5. CARGAS PERMANENTES

3-17

3.5.1. Cargas Permanentes: DC, DW y EV

3-17

3.5.2. Cargas de Suelo: EH, ES y DD

3-18

DC = peso propio de los componentes estructurales y agregados no estructurales DW = peso propio de las superficies de rodamiento e instalaciones para servicios EV = presión vertical del peso propio del suelo de relleno

EH = empuje horizontal del suelo

ES = sobrecarga de suelo

DD = fricción negativa

Información no disponible en nuestro esquema reglamentario actual

A QUÉ SE ESTÁ HACIENDO REFERENCIA AL HABLAR DE «CARGAS»?

2	0	CO	DI			A .		-	10
J	.6.	SO	ы	ĸ	=	ıΑ	К	5	AS

3.6.1. Sobrecargas Gravitatorias: LL y PL

3.6.2. Incremento por Carga Dinámica: IM

3-18

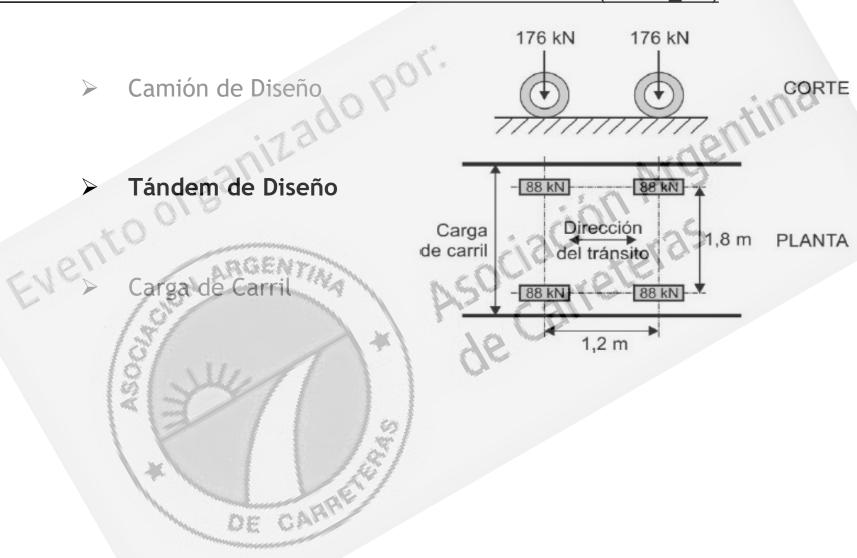
LL = sobrecarga vehicular

PL = sobrecarga peatonal

5-18 3-18 3-26 IM = incremento por carga vehicular dinámica

CARRE

MAGNITUD Y TIPOS DE CARGAS - CARGAS AASHTO (HL-13_AR)


- > Camión de Diseño
- Tándem de Diseño
- Carga de Carril

MAGNITUD Y TIPOS DE CARGAS - CARGAS AASHTO (HL-13_AR)

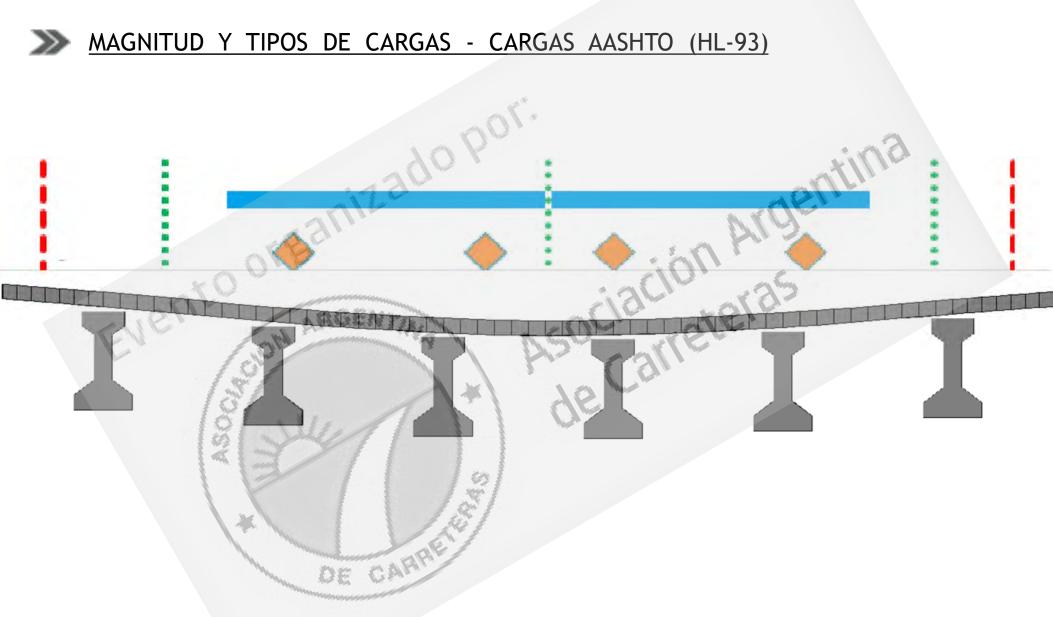
MAGNITUD Y TIPOS DE CARGAS - CARGAS AASHTO (HL-13_AR)

Camión de Diseño

Tándem de Diseño

Carga de Carril:

5 kN/m² uniformemente distribuida sobre un ancho transversal de calzada de 3.00 m


PL: Sobrecarga Peatonal (veredas): 3,60 kN/m²

OF CARR

>>>

INCREMENTO POR CARGA DINÁMICA (Impacto)

DE CARP

Componente	IM
Juntas del tablero - Todos los Estados Límites	75%
Todos los demás componentes	11/2
Estado Límite de fatiga y fractura	15%
 Todos los demás Estados Límites 	33%

El incremento por carga dinámica no se aplicará a las cargas peatonales ni a la carga del carril de diseño, en otras palabras, se aplican sólo a los efectos producidos por los ejes.

ACCIONES: TRATAMIENTO DE LA PRESENCIA MÚLTIPLE

Número de Carriles Cargados	AASHTO: factor a aplicar a todas las cargas de carril	entina
T. G. a	1.20	
2	1.00	2
A 3 GEN	0.85	
4	0.65	
Más de 4	0.65	

DE CARRE

3.6. SOBRECARGAS	3-18
3.6.1. Sobrecargas Gravitatorias: LL y PL	3-18
3.6.2. Incremento por Carga Dinámica: IM	3-26
3.6.3. Fuerzas Centrífugas: CE	3-28
3.6.4. Fuerza de Frenado: BR	3-29
3.6.5. Fuerza de Colisión de un Vehículo: CT	3-29
ENGLISON ARGENTAL DEOCIAL REFERS	
LL = sobrecarga vehicular	
PL = sobrecarga peatonal	
IM = incremento por carga vehicular dinámica	

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

CT = fuerza de colisión de un vehículo

EVENTOS EXTREMOS: COLISIÓN DE VEHÍCULOS CONTRA DEFENSAS

3.7. CARGAS HIDRÁULICAS: WA	3-30
3.7.1. Presión Hidrostática	3-30
3.7.2. Flotación	3-30
3.7.3. Acciones producidas por una Corriente de Agua	3-31
3.7.3.1. En sentido Longitudinal	3-31
3.7.3.2. En sentido Transversal	3-31
3.7.4. Acciones producidas por el Oleaje	3-32
3.7.5. Cambios en las Condiciones de Fundación debidos al Estado Límite de Socavación	3-32

3.8. CARGA DE VIENTO: WL y WS	3-33
3.8.1. Presión Horizontal del Viento	3-33
3.8.1.1. Requisitos Generales	3-33
3.8.1.2. Presión del Viento sobre las Estructuras: WS	3-34
3.8.1.2.1. Requisitos Generales	3-34
3.8.1.2.2. Cargas de las Superestructuras	3-35
3.8.1.2.3. Fuerzas Aplicadas Directamente a la Subestructura	3-36
3.8.1.3. Presión de Viento sobre los Vehículos: WL	3-36
3.8.2. Presión Vertical del Viento	3-37
3.8.3. Inestabilidad Aeroelástica	3-37
3.8.3.1. Requisitos Generales	3-37
3.8.3.2. Fenómenos Aeroelásticos	3-37
3.8.3.3. Control de Respuestas Dinámicas	3-38
3.8.3.4. Ensayos en Túnel de Viento	3-38

WL = Presión del viento sobre los Vehículos CT = Presión del viento sobre las Estructuras

_	_	-

3.9.	CARGAS DE HIELO: IC	.01.	3-38

3.10. EFECTOS SÍSMICOS EQ (a definir por el INPRES)

3.11. EMPUJE DEL SUELO: EH, ES, LS y DD

Cargas Permanentes

EH = empuje horizontal del suelo

ES = sobrecarga de suelo

Cargas Transitorias

LS = sobrecarga viva

DD = fricción negativa

3.12. EFECTOS DEBIDOS A DEFORMACIONES IMPUESTAS: TU, TG, SH, CR, SE. PS

Cargas permanentes

CR = solicitaciones generadas por fluencia lenta

PS = fuerzas secundarias de postensado

SH = solicitaciones generadas por contracción

Cargas transitorias

SE = solicitaciones generadas por asentamiento

TG = solicitaciones generadas por gradiente de temperatura

TU = solicitaciones generadas por temperatura uniforme

	3.13	. FL	JERZAS	S FRI	CCIO	NAL	ES:	FR
--	------	------	--------	-------	------	-----	-----	----

3.14. COLISIÓN DE EMBARCACIONES: CV

3.15. CARGAS EXPLOSIVAS: BL

Asociación Angel

EVENTOS EXTREMOS: COLISIÓN DE EMBARCACIONES

A QUÉ SE ESTÁ HACIENDO REFERENCIA AL HABLAR DE COMBINACIÓN DE ACCIONES Y DE MAYORACIÓN DE ACCIONES ?

Básicamente a «grillas» en las que se establecen, con base probabilística, coeficientes de combinación para cada una de las acciones

Grilla para Estados Límites de Resistencia (luego se verá con más detalle)

DC DD DW									Usa	r sólo	uno po	or vez	
EV	LL		15	16						SM			
ES EL PS CR	IM CE BR PL	117	30					A	GELLI				
SH	LS	WA	WS	WL	FR	TU	TG	SE	EQ (*)	BL	IC	CT	CV
Yp	1,75	(1,00		1	1,00	0,50/1,20	γтα	YSE	3,2	4	-	-	-
Vp	1,35	1,00		-	1,00	0,50/1,20	/TG	γsε	-	-	-	-	-
P	-	1,00	1,40	4	1,00	0,50/1,20	γTG	YSE	-	-	-	-	-
Yp	1-11	1,00	1-	1-	1,00	0,50/1,20	-	-		1.5		-	-
γp	1,35	1,00	0,40	1,00	1,00	0,50/1,20	γTG	γsε	-	1.45	112	-	
	DD DW EH EV ES EL PS CR SH	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA Yp 1,75 1,00 Yp 1,35 1,00 Yp 1,00	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS γ _p 1,75 1,00 - 1,00 1,40 γ _p - 1,00 - 1,00 - 1	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL γ _p 1,75 1,00	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR γ _p 1,75 1,00 1,00 γ _p - 1,00 1,40 - 1,00 γ _p - 1,00 1,00	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR TU γ _p 1,75 1,00 1,00 0,50/1,20 γ _p 1,35 1,00 1,00 0,50/1,20 γ _p - 1,00 1,40 + 1,00 0,50/1,20 γ _p - 1,00 1,00 0,50/1,20	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR TU TG γτς γρ 1,35 1,00 1,00 0,50/1,20 γτς γρ - 1,00 1,40 - 1,00 0,50/1,20 γτς γρ - 1,00 1,00 0,50/1,20 γτς γρ - 1,00 1,00 0,50/1,20 γτς γρ - 1,00 1,00 0,50/1,20 -	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR TU TG SE γ _p 1,75 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _p - 1,00 1,40 - 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _p - 1,00 1,40 - 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _p - 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE}	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR TU TG SE EQ (*) \[\text{\$\gamma_p\$} \] \[\frac{1}{35} \] \[\frac{1}{90} \] \[- \] \[\frac{1}{90} \] \[\frac{1}	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR TU TG SE EQ (*) BL γ _p 1,75 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _o - 1,00 1,40 - 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _o - 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _o - 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE} γ _o - 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE}	DD DW EH EV LL ES IM EL CE PS BR CR PL SH LS WA WS WL FR TU TG SE EQ (*) BL IC γ _p 1,75 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE}	DD DW EH EV LL ES IIM EL CE PS BR CR PL SH LS WA WS WL FR TU TG SE EQ (*) BL IC CT γ _p 1,75 1,00 1,00 0,50/1,20 γ _{TG} γ _{SE}

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

WA = carga hidráulica y presión del flujo de agua

WS = viento sobre la estructura

WL = viento sobre la sobrecarga

FR = carga de fricción

TU = solicitaciones generadas por temperatura uniforme

Ver aparte

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una

embarcación

OTROS DOCUMENTOS AASHTO COMPLEMENTARIOS

LEMENTA Cit-lah Cal-lah CARRE

EXISTENCIA DE DOCUMENTOS COMPLEMENTARIOS DESARROLLADOS EN EL MISMO AMBIENTE LRFD

- AASHTO LRFD Bridge Construction Specifications,
- LRFD Road Tunnel Design and Construction Guide Specifications
- LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals
- LRFD Guide Specifications for the Design of Pedestrian Bridges
- Guide Specifications for Design and Construction of Segmental Concrete Bridges
- AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition, with 2012, 2014 and 2015 Interim Revisions
- AASHTO LRFD Movable Highway Bridge Design Specifications
- Movable Bridge Inspection, Evaluation and Maintenance Manual
- Guide Specifications for Seismic Isolation Design, 4th Edition
- Manual for Bridge Evaluation
- Manual for Bridge Element Inspection
- Guide Design Specifications for Bridge Temporary Works

Puentes Peatonales, Construcción con Dovelas, Túneles, Análisis Sísmico, Aislación Sísmica, Puentes Móviles, Evaluación e Inspección, Reparaciones y Refuerzos, Trabajos Temporarios

la mayoría sin referencias en nuestro esquema reglamentario actual

COMPATIBILIDAD CON REGLAMENTOS DE PUENTES PARA FERROCARRILES

The American Railway Engineering and Maintenance-of-Way Association

Load Factor Design.

(1) The group loading combinations for LOAD FACTOR DESIGN are as shown in Table 8-2-5.

Table 8-2-5. Group Loading Combinations - Load Factor Design

Group	Item
I ARE	1.4 (D + 5/3 (L + I) + CF + E + B + SF)
IA	1.8 (D + L + I + CF + E + B + SF)
11	1.4 (D + E + B + SF + W)
S III	1.4 (D + L + I + CF + E + B + SF + 0.5W + WL + LF + F)
IV	1.4 (D + L + I + CF + E + B + SF + OF)
V	Group II + 1.4 (OF)
VI	Group III + 1.4 (OF)
VII	1.0 (D + E + B + EQ)
VIII	1.4 (D + L + I + E + B + SF + ICE)
IX	1.2 (D + E + B + SF + W + ICE)

COMPATIBILIDAD CON REGLAMENTOS DE PUENTES PARA OBRAS HIDRÁULICAS

US Army Corps of Engineers

Table 3-1. Minimum Load Factors.

EM 1110-2-2104
Strength Design for Reinforced
Concrete Hydraulic Structures

Año 2016

Coeficientes de reducción de resistencia según ACI 318

Limit State		Service	Serviceability ⁶	
Load Category		U. Usual	N. Unusual	X. Extreme
Return Period, years - Critical		10	10-750	> 750
Return Period, years - Normal		10	10-300	> 300
Permanent Loads, Lp		Yu	YN	Vx
Dead	D	2.25	1.65	1.2 ¹ , 0.9 ²
Vertical Earth	EV	2.25	1.65	1.35 ¹ , 1.0 ²
Lateral Earth	EH	2.25	1.65	See Note 3
Hydrostatic (Companion Load)	Hs	2.25	1.65	1.0
Gravity (Mud/Ice)	G	2.25	1.65	1.6 ¹ , 0 ²
Temporary Loads, Lt	all a	YU	Yn	Yx
Peak Hydrostatic - Flood, Drought, Surge, Maintenance (Principal Load)	Hs	2.25	1.65	1.0 or 1.3 ⁴
Thermal Expansion of Ice	IX	NA	1.65	1.0 or 1.34
Soil Surcharge	ES	2.25	1.65	1.0 or 1.3 ⁴
Operating Equipment	Q	2.25	1.65	10 or 13 ⁴
Live Load (vertical)	L	2.25	1.65	ASCE 77
Self Straining	T	2.25	1.65	ACI 318 ⁷
Vehicle Live Loads	V	2.25	1.65	AASHTO7
Dynamic Loads, Ld		Yu	YN	Yx
Hydrodynamic (except seismic)	Hd	2.25	1.65	1.0 or 1.3 ⁴
Wave	Hw	2.25	1.65	1.0 or 1.34

COMPATIBILIDAD CON REGLAMENTOS DE PUENTES PARA OBRAS HIDRÁULICAS

US Army Corps of Engineers

EM 1110-2-2104
Strength Design for Reinforced
Concrete Hydraulic Structures

Año 2016

Coeficientes de reducción de resistencia según ACI 318

Table 3-1. Minimum Load Factors (Continued).

Limit State		Serviceability ⁶	Strength	
Debris/Floating Ice Impact	I	2.25	1.65	1.0 or 1.3 ⁴
Barge/Boat Impact	IM	2.25	1.65	1.0 or 1.34
Wind	W	NA	1.65	ASCE 77
Earthquake	EQ	NA	Para 3.3.3	Para. 3.3.3
Hawser	В	NA	1.65	NA

Table 3-1 Notes:

- 1. Applied when loads add to the predominant load effect
- 2. Applied when loads subtract from the predominant load effect.
- 3. Load Factors for Lateral Earth Pressure

Structures using at-rest pressure for design

Driving pressure = 1.35; Resisting pressure = 0.9.

All other structures

Driving (Active) pressure = 1.5; Resisting (Passive) Pressure = 0.5

Dynamic analysis (response spectra and time history) of earthquake (at-rest pressure) = 1.0

4. Temporary and dynamic Extreme loads shall be designed with:

Load factor =1.3

Loads that are physically limited with return periods lower than 3,000 years for normal structures or 10,000 years for critical structures.

Loads for which return period cannot be determined.

Load Factor = 1.0

Loads that are not limited, for which return period can be determined, with design with return periods greater than or equal to 3,000 years for normal structures or 10,000 years for critical structures.

- 5. For members in direction tension (net tension across the entire cross section): Usual load factor = 2.8, Unusual load factor = 2.0.
- Load factors for serviceability limit states are intended to provide designs with stresses in the concrete and reinforcing steel that limit cracking under service loads. The load factors are not reliability based.
- 7. Where other standards are referenced, load cases and load factors from those standards will be used for design when those loads are primary loads. See load descriptions for details.

BIBLIOGRAFÍA DE APOYO Y EJEMPLOS GRATUITOS EN INTERNET

BIBLIOGRAFÍA DE APOYO Y EJEMPLOS GRATUITOS EN EVENTOOFE CARRE

BIBLIOGRAFÍA DE APOYO Y EJEMPLOS DE ACCESO GRATUITO

NCHRP: National Cooperative Highway Research Program

Puede encontrarse aquí el sustento experimental y teórico de muchas de las prescripciones de los documentos AASHTO. También han desarrollado soluciones a muchos problemas prácticos poco frecuentados por la bilbiografía (p.e. fundaciones en LRFD, socavación para diferentes condiciones locales, etc.)

• FHWA: Federal Highway Administration

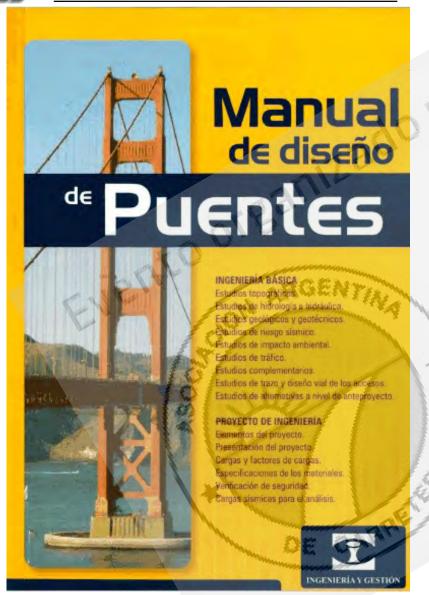
Manuales (p.e. puentes cajón, fundaciones con pilotes, etc.) y ejemplos resueltos (p.e. superestructura completa puente viga según AASHTO)

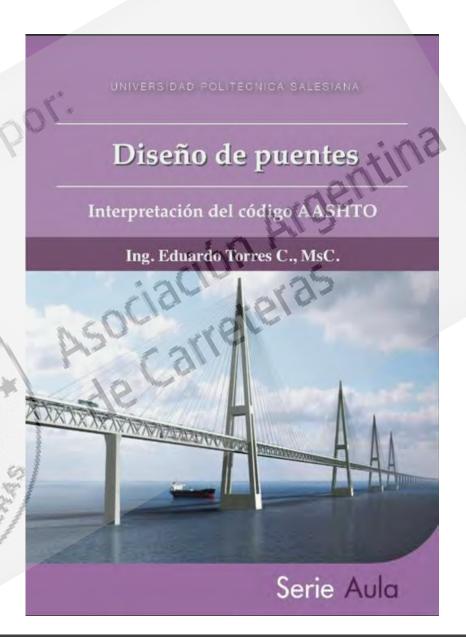
DOT's: Departamentos de Transporte (Vialidades)

Manuales y ejemplos

BIBLIOGRAFÍA EN CASTELLANO

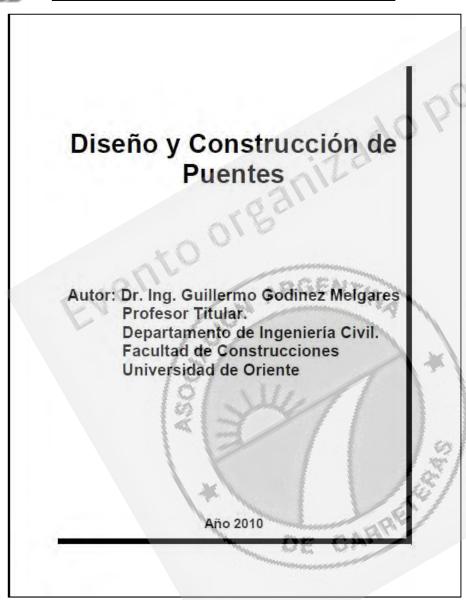
Curso de Diseño Estructural de Puentes

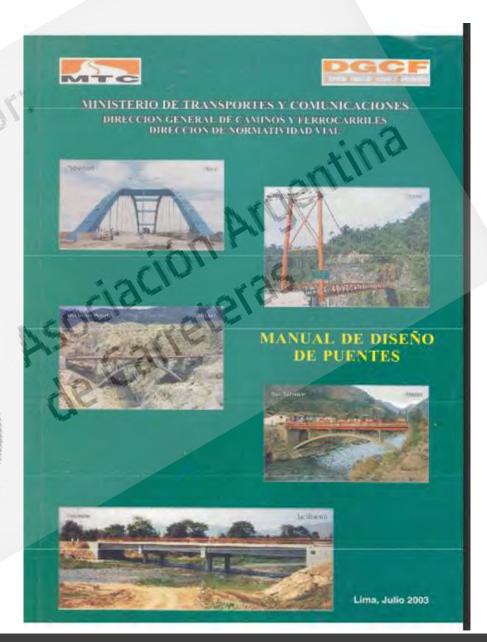




José Bellido de Luna
Universidad Central de Chile, 2002

BIBLIOGRAFÍA EN CASTELLANO





BIBLIOGRAFÍA EN CASTELLANO

COMENTARIOS REFERENTES AL USO DE SOFTWARE EVENTOOFB CARRE

COMENTARIOS REFERENTES AL USO DE SOFTWARE

 Lo que en el esquema actual no requiere software comercial no lo requerirá para el nuevo CIRSOC 800

Todo lo que actualmente puede resolverse mediante planillas de cálculo tipo Excel o de software tipo Mathcad requrirá una actualización pero no el uso de programas comerciales

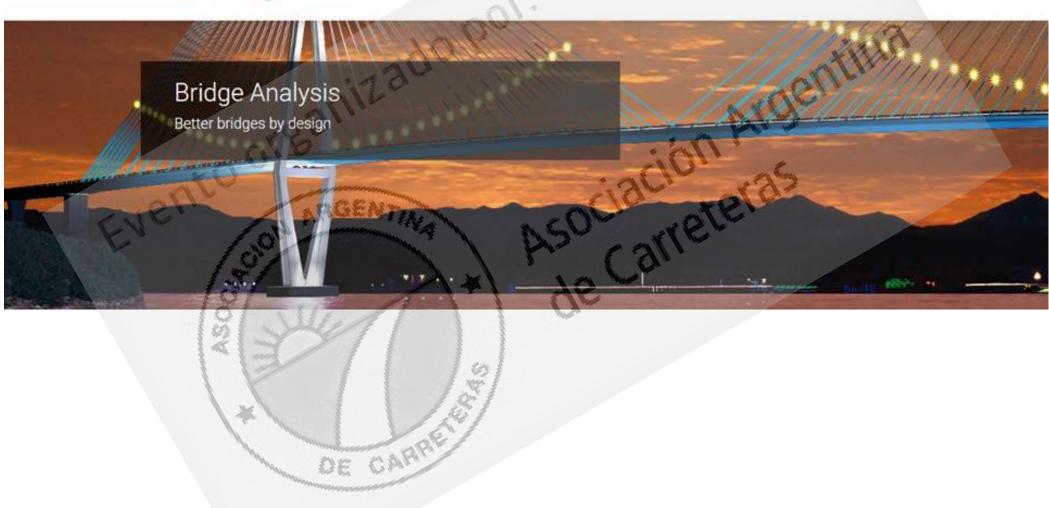
 Los programas comerciales para el cálculo de solicitaciones no requerirán actualizaciones especiales

Todos los programas comerciales "estándar" permiten la introducción de las acciones del CIRSOC 800 y sus respectivas combinaciones de cargas

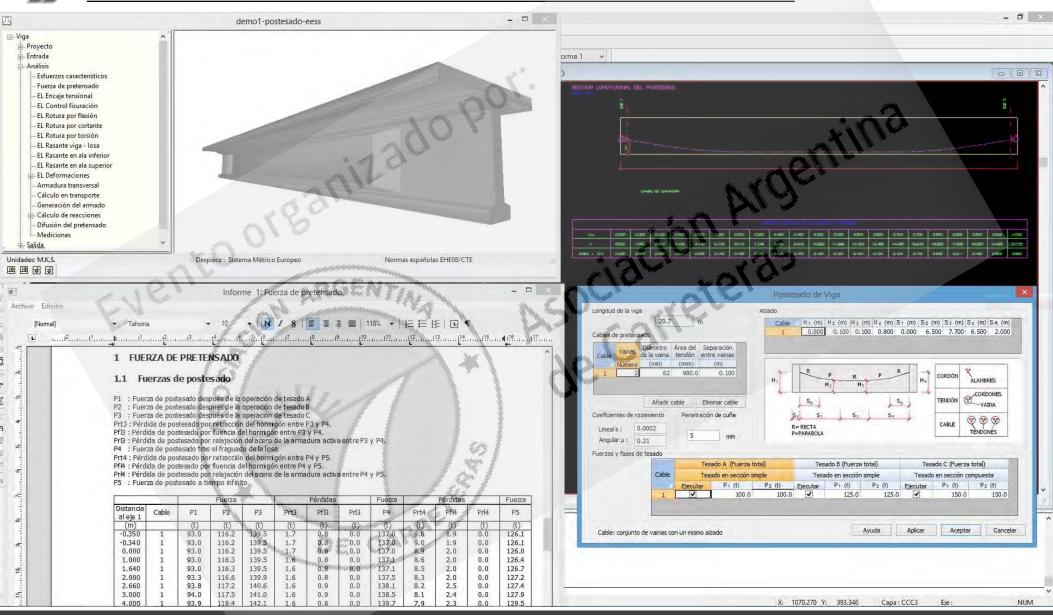
Programa gratuito de dimensionamiento CIRSOC-Flex

El programa seguirá siendo gratuito y contará con una actualización que incluye el dimensionamiento según el CIRSOC 802

COMENTARIOS REFERENTES AL USO DE SOFTWARE COMERCIAL



COMENTARIOS REFERENTES AL USO DE SOFTWARE COMERCIAL


Bentley'

COMENTARIOS REFERENTES AL USO DE SOFTWARE COMERCIAL

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

Introducción

El CIRSOC 801 Se refiere a:

- Diseño
- Evaluación
- Rehabilitación

Puentes Carreteros Base AASHTO 2005

Énfasis: Seguridad con

- REDUNDANCIA
- DUCTILIDAD
- Proteccion contra SOCAVACIÓN
- Y contra

COLISIONES

PRINCIPALES
CAUSAS DE
COLAPSO DE
PUENTES

Utiliza metodología LRFD:

Métodos semiprobabilísticos de la Teoría de la Confiabilidad Con *FACTORES DE CARGA* y *RESISTENCIA*

Efectos de las Cargas Mayorados

Resistencias Minoradas

Filosofía del diseño

Cumplir con Estados Límites

Constructibilidad

Serviciabilidad

1. Inspección

2. Economía

3. Estética

Servicio

Límites aceptados en condiciones *normales* de servicio

Resistencia

Asegurar la Estabilidad ante combinaciones de cargas significativas esperables durantes la Vida Útil

Fatiga y Fractura

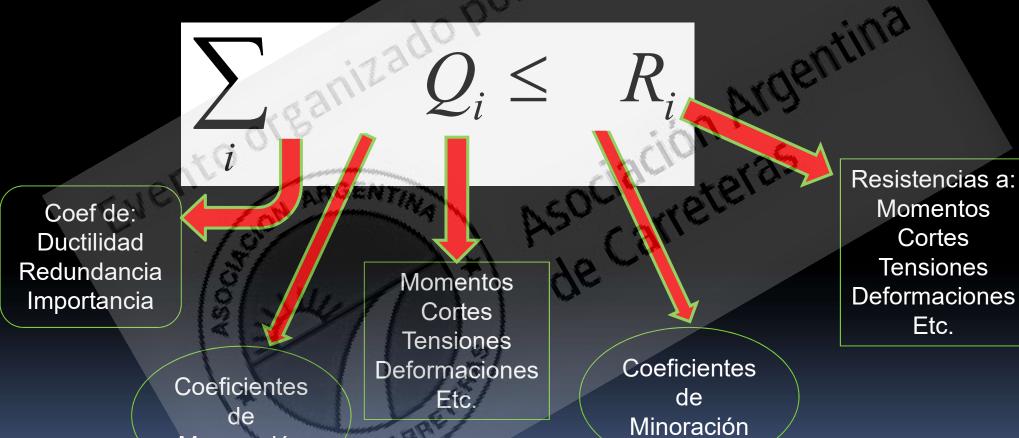
Asegurar la Estabilidad ante el Efecto de Cargas Cíclicas

Eventos Extremos

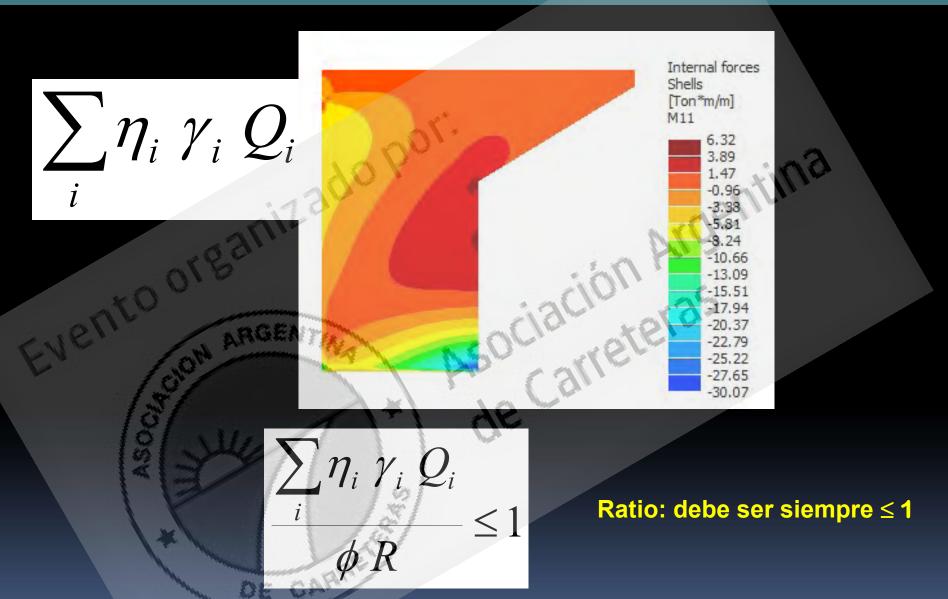
Asegurar la Supervivencia ante Situaciones **Extremas**: SISMO, COLISIÓN, INUNDACIÓN, etc.

Filosofía del diseño

Efectos de las Cargas Resistencias Minoradas Mayorados Ductilidad Se aplican coeficientes Redundancia que consideran Importancia Operativa DE CARR



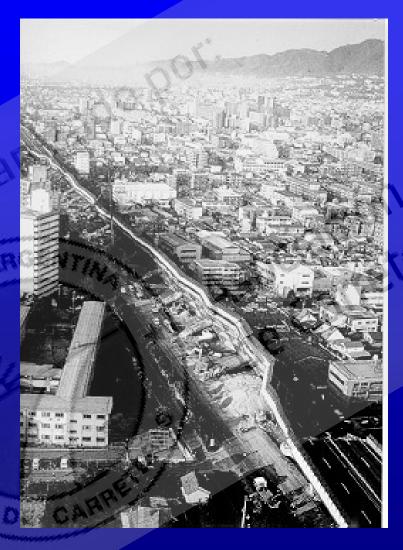
Expresión para el diseño (sistemas lineales)


Efectos de las Cargas Mayorados

Resistencias Minoradas

Mayoración DE CARI

Para todos los ESTADOS LIMITES y para TODA LAS COMBINACIONES DE CARGA



Asociación Argentina de Carreteras Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

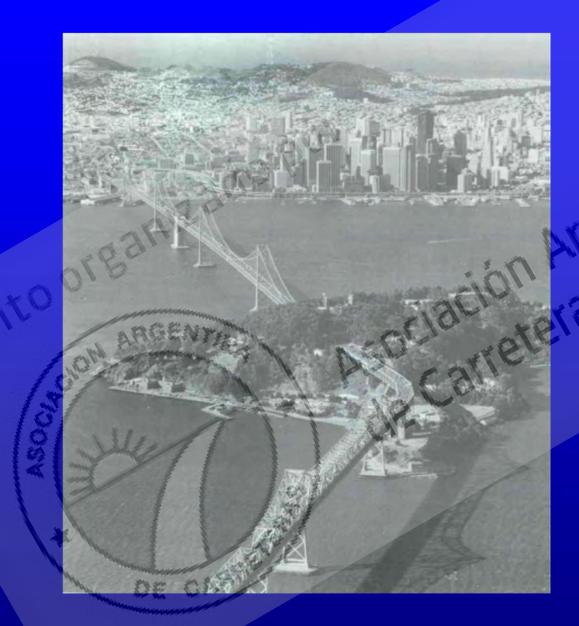
DE CARP CIRSOC SERIE 800 - CRITERIOS DE SEGURIDAD

CRITERIOS DE SEGURIDAD

Raúl D. Bertero

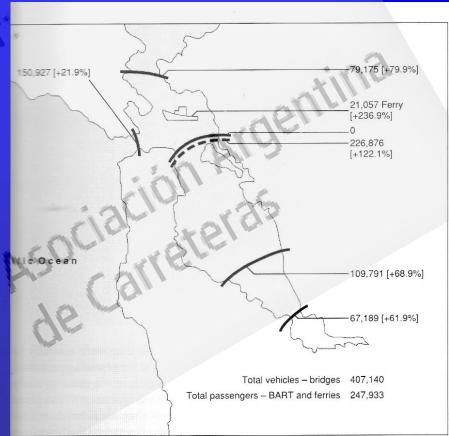
Universidad de Buenos Aires

CRITERIOS DE SEGURIDAD


 IMPORTANCIA DE LOS CONCEPTOS PROBABILISTICOS - INDICE DE CONFIABILIDAD

COMO FALLAN LOS PUENTES?

LRFD

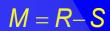

CONCLUSIONES

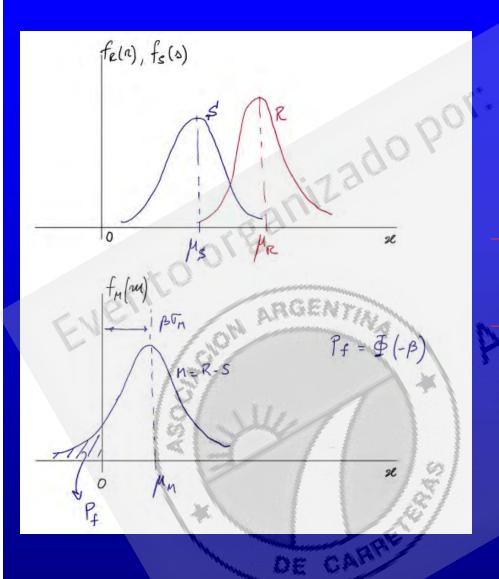
CORREGE

Bay-bridge San Francisco-Oakland

Sismo de Loma Prieta 1989

El análisis probabilístico permite la optimización económica del costo total (costo inicial más costo de las reparaciones y costos indirectos)


79,175 [+79.9%] [+236.9%] ific Ocean 109,791 [+68.9%] Total passengers - BART and ferries 247,933


Cc= Costo de construcción

Cf= Costos de la falla

$$Ctotal = Cc + Pf \circ Cf = \left(1 + \frac{Cf}{Cc} \circ Pf\right) \circ Cc$$

INDICE DE CONFIABILIDAD

ß=	μ_{M}	_	$\mu_{R} - \mu_{S}$		
ρ-	$\sigma_{\scriptscriptstyle M}$		$\sqrt{\sigma_R^2 + \sigma_S^2}$		

$P_{\rm F}$	β
10-1	1.28
10-2	2.33
10-3	3.09
10.4	3.71
10-5	4.26
10-6	4.75
10-7	5.19
10-8	5.62
10-9	5.99

Probabilidad de falla en la vida útil de la estructura

$$\beta = \frac{\mu_M}{\sigma_M} = \frac{\mu_R - \mu_S}{\sqrt{\sigma_R^2 + \sigma_S^2}}$$

INDICE DE CONFIABILIDAD

$$\mu_{R} = \mu_{S} + \beta \sqrt{\sigma_{R}^{2} + \sigma_{S}^{2}}$$

- Si β es demasiado pequeño aumenta la probabilidad de falla
- Si ß es demasiado grande la estructura es demasiado cara

I

depende de las consecuencias de la falla y de los costos del aumento de la seguridad

$P_{\rm F}$	β
10-1	1.28
10-2	2.33
10-3	3.09
10-4	3.71
10-5	4.26
10-6	4.75
10-7	5.19
10-8	5.62
10-9	5.99

AASHTO – ESTADO LIMITE ULTIMO

TR=75 años β = 3.5

Pf = 2.3 x 10⁻⁴ en 75 años P1= 3 x 10⁻⁶ por año

COMO FALLAN LOS PUENTES?

INUNDACION

Fig. 3. Collapse of the Schoharie Creek Bridge due to flood in 1987 (reprinted from USGS 2012)

HURACAN

Fig. 5. Bridge decks knocked off pile caps during hurricane (image courtesy of Wikimedia Commons/Joe Furr, WIKIPEDIA 2005)

DESLIZAMIENTO DE SUELOS

Fig. 4. Collapse of a bridge due to landslide (image courtesy of Xi Zhang)

SOBRECARGA

Fig. 6. Bridge collapse due to an overloaded truck (image courtesy of Yuqiang Liu)

ERROR DE DISEÑO

Fig. 1. Collapse of the original Tacoma Narrows Bridge in 1940 (reprinted from WIKIPEDIA 1940)

COLISION DE EMBARCACIONES

Fig. 8. Collapse of a bridge due to vessel impact (image courtesy of Wikimedia Commons/Xpda, WIKIREDIA 2002)

SOCAVACION

COLISION DE VEHICULOS

DETERIORO

TERREMOTO

10 Call

PUENTE SOBRE UN RIO

EVENTOS DE FALLA

A = socavación/inundación

B = choque de embarcación

C = combinación de cargas

D = terremoto

F = Colapso del puente

$$F = A \cup B \cup C \cup D$$

$$P(F) = P(A) + P(B) + P(C) + P(D)$$

$$P(A) = P(B) = P(C) = P(D) = 10^{-3}$$

$$P(F) = 4 \, \text{G} 10^{-3}$$

$$P(A) = P(B) = P(D) = 10^{-3}$$
 $P(C) = 10^{-5}$

$$P(F) = 4.01 \, ^{\circ}10^{-3}$$

INCREMENTAR LA SEGURIDAD DE SOLO UNA DE LAS CAUSAS DE FALLA INCREMENTA LOS COSTOS PERO NO REDUCE LA PROBABILIDAD DE FALLA

PUENTE SOBRE UN RIO

EVENTOS DE FALLA

A = socavación/inundación

B = choque de embarcación

C = combinación de cargas

D = terremoto

F = Colapso del puente

$$F = A \cup B \cup C \cup D$$

$$P(F) = P(A) + P(B) + P(C) + P(D)$$

$$P(A) = P(B) = P(C) = P(D) = 10^{-3}$$

$$P(F) = 4 \, \text{G} 10^{-3}$$

$$P(A) = P(B) = P(C) = 10^{-3}$$
 $P(A) = 10^{-2}$

$$P(F) = 1.03 \, \text{O} \, 10^{-2}$$

SI UNA DE LAS CAUSAS DE FALLA ES PREDOMINANTE CONTROLA LA PROBABILIDAD DE FALLA DEL PUENTE

ESTADISTICAS DE FALLAS DE PUENTES EN ESTADOS UNIDOS (1987-2011)

Table 5 Cause-proportioned failure rate for bridges in the United States (1987-2011)

Mode of Failure	Partial Collapse	Total Collapse	Not Indicated	Total Count	Percentage of Total	Proportion of Failure Rate
Hydraulic Total	82	115	182	379	54.85%	1.17E-04
Flood	26	56	116	198	28.65%	6.10E-05
Scour	46	41	44	131	18.96%	4.03E-05
Debris	1	5	17	23	3.33%	7.08E-06
Hydraulic	6	8	0	14	2.03%	4.31E-06
Ice	3	3	5	11	1.59%	3.39E-06
Drift	0	2	0	2	0.29%	6.16E-07
Collision Total	47	24	18	89	12.88%	2.74E-05
Collision	35	13	14	62	8.97%	1.91E-05
Auto/truck	9	4	1	14	2.03%	4.31E-06
Barge/Ship	3	5	3	11	1.59%	3.39E-06
Train	0	2	0	2	0.29%	6.16E-07
Overload	11,1	44	23	78	11.29%	2.40E-05
Deterioration Total	25	12	24	61	8.83%	1.88E-05
Deterioration	23	11	15	49	7.09%	1.51E-05
Steel- deterioration	2	1	9	12	1.74%	3.69E-06
Fire	6	9	4	19	2.75%	5.85E-06
Storm/Hurricane	1	16	0	17	2.46%	5.23E-06
Geotechnical	7	4	1	12	1.74%	3.69E-06
Construction	3	7	0	10	1.45%	3.08E-06
Miscellaneous	1	2	4	1	1.01%	2.16E-06
Earthquake	0	5	11/	6	0.87%	1.85E-06
Fatigue-steel	4	0	1	3	0.72%	1.54E-06
Design Error	2	J	1	4	0.58%	1.23E-06
Tree Fall	0	0	2	2	0.29%	6.16E-07
Bearing	1	1	0	2	0.29%	6.16E-07
Sum	190	240	261	691	100.00%	2.13E-04

HIDRAULICAS = 55%

COLISION = 13%

SOBRECARGA = 11%

DETERIORO = 9%

OTRAS = 12 %

AASHTO – ESTADO LIMITE ULTIMO

TR=75 años β = 3.5 P1= 3 x 10⁻⁶ por año

REAL P1 = 2 x 10⁻⁴ por año

ESTADISTICAS DE FALLAS DE PUENTES EN ESTADOS UNIDOS (1987-2011)

Table 6	Cause-proportioned	conditional	failure rate for	bridges in t	the United States

Cause of Failure	Over Water			Over Roadway & RR		
	Count	Proportion	Failure Rate	Count	Proportion	Failure Rate
Total	609	100.00%	2.44E-04	87	100.00%	1.43E-04
Hydraulic Total	379	62.23%	1,52E-04	7	8.05%	1.15E-05
Overload	69	11.33%	2.77E-05	3	3.45%	4.94E-06
Deterioration Total	55	9.03%	2.21E-05	6	6.90%	9.89E-06
Collision Total	42	6.90%	1.68E-05	52	59.77%	8.57E-05
Storm/Hurricane	17	2.79%	6.82E-06	-	-	
Fire	12	1.97%	4.81E-06	6	6.90%	9.89E-06
Geotechnical	9	1.48%	3.61E-06	4	4.60%	6,59E-06
Construction	7	1.15%	2.81E-06	4	4.60%	6.59E-06
Fatigue-steel	4	0.66%	1.60E-06	1 1	1.15%	1.65E-06
Earthquake	3	0.49%	1.20E-06	2	2.30%	3.30E-06
Design	3	0.49%	1.20E-06	4	-101	1
Tree Fall	2	0.33%	8.02E-07	-\		-
Bearing		0.16%	4.01E-07	1	1.15%	1.65E-06
Miscellaneous	6	0.99%	2,41E-06	1	1.15%	1.65E-06

AASHTO – ESTADO LIMITE ULTIMO

TR=75 años β= 3.5 P1= 3 x 10⁻⁶ por año

SOBRE AGUA

HIDRAULICA = 62 % p1=1.5 x 10⁻⁴ año

Sobrecarga = 11 % p1= 2.8 x 10⁻⁵ año

SOBRE CARRETERA

COLISION = 60% p1=8.6 x 10^{-5} año

Sobrecarga = 3 % p1=4.9 x 10⁻⁶ año

CRITERIOS DE SEGURIDAD

COMO FALLAN LOS PUENTES?

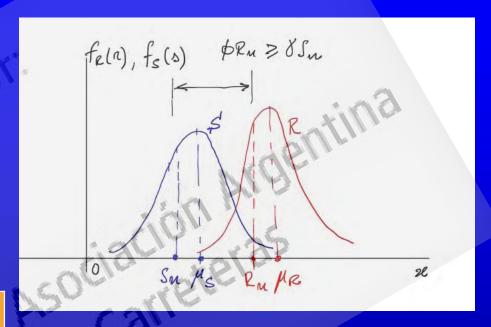
- Por fallas hidráulicas sobre agua
- Por colisiones sobre carreteras

Controlan la probabiidad de falla anual de los puentes del orden de 2 x 10⁻⁴ en USA

Las fallas por sobrecargas son del orden de lo esperado por el reglamento

Se debe avanzar con la elaboración de estadísticas propias de tránsito y de fallas para ajustar los valores reglamentarios de la AASHTO a nuestra realidad

ECUACIONES DE DISEÑO – LRFD

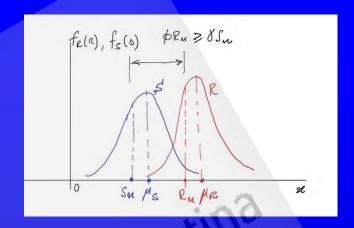

Ecuación de falla, $R \ge D + L$

Se elige una prob. de falla objetivo, β =3.5

Se conocen las propiedades estadísticas de D, L y R

11		The state of the s
F	ESTADO LIM TR = 75 añ	
	μ/X_n	δ
D	1.05	0.10
L	1.40	0.14
R (HA)	1.14	0.13

RELACION VALOR MEDIO/VALOR NOMINAL


Nominal es el valor del reglamento, Camión HL-93

L es el efecto de las cargas (Momentos y corte en la estructura)

AASHTO espera que el máximo en 75 años sea 40% más grande que el efecto calculado con el HL-93 (pero eso ya está previsto en los coeficientes de seguridad)

ECUACIONES DE DISEÑO – LRFD

	ESTADO LIMITE ULTIMO TR = 75 años, β =3.5				
	$\mu_{/X_n}$	δ			
D	1.05	0.10			
L	1.40	0.14			
R (HA)	1.14	0.13			

$$R \ge D + L$$

$$\left(1-\beta \frac{\sigma_{R}}{\sqrt{\sigma_{R}^{2}+\sigma_{D}^{2}+\sigma_{L}^{2}}} \delta_{R}\right) \mu_{R} \ge \left(1+\beta \frac{\sigma_{D}}{\sqrt{\sigma_{R}^{2}+\sigma_{D}^{2}+\sigma_{L}^{2}}} \delta_{D}\right) \mu_{D} + \left(1+\beta \frac{\sigma_{L}}{\sqrt{\sigma_{R}^{2}+\sigma_{D}^{2}+\sigma_{L}^{2}}} \delta_{L}\right) \mu_{L}$$

con

$$\sigma_R \simeq \sigma_D \simeq \sigma_L$$

$$\left(1 - \frac{\beta}{\sqrt{3}} \delta_R\right) \frac{\mu_R}{R_n} R_n \ge \left(1 + \frac{\beta}{\sqrt{3}} \delta_D\right) \frac{\mu_D}{D_n} D_n + \left(1 + \frac{\beta}{\sqrt{3}} \delta_L\right) \frac{\mu_L}{L_n} L_n$$

$$0.85 R_n \ge 1.25 D_n + 1.75 L_n$$

RESISTENCIA I - AASHTO

Los coeficientes de seguridad se obtienen de estadísticas de valores medios/nominales y de coeficiente de variación de las cargas

ECUACIONES DE DISEÑO - LRFD - REDUNDANCIA, **DUCTILIDAD, IMPORTANCIA**

$$R \ge D + L$$

con

$$\sigma_R \simeq \sigma_D \simeq \sigma_L$$

$$\left(1 - \frac{\beta}{\sqrt{3}} \delta_{R}\right) \frac{\mu_{R}}{R_{n}} R_{n} \ge \left(1 + \frac{\beta}{\sqrt{3}} \delta_{D}\right) \frac{\mu_{D}}{D_{n}} D_{n} + \left(1 + \frac{\beta}{\sqrt{3}} \delta_{L}\right) \frac{\mu_{L}}{L_{n}} L_{n} \qquad 0.85 R_{n} \ge 1.25 D_{n} + 1.75 L_{n}$$

$$\phi R_n \ge \gamma_D D_n + \gamma_L L_n$$

En general, ecuación de falla

$$R \ge \sum_{i=1}^n Q_i$$

$$\phi R_n \ge \sum_{i=1}^n \gamma_i C_i$$

$$\mathsf{Con}\,\beta = 3.5$$

El reglamento modifica β para considerar

Redundancia

 η_R

Ductilidad

- η_D
- Importancia de la falla

$$\eta_I$$

$$\phi R_n \ge \sum_{i=1}^n \eta_i \gamma_i Q_i$$
 $\eta_i = \eta_D \eta_R \eta_I$

ECUACIONES DE DISEÑO – LRFD – REDUNDANCIA, DUCTILIDAD, IMPORTANCIA

Ecuación de diseño

$$\phi R_n \ge \sum_{i=1}^n \gamma_i Q_i$$

Con
$$\beta$$
 = 3.5

El reglamento modifica β para considerar

$$\phi R_n \ge \sum_{i=1}^n \eta_i \gamma_i Q_i$$

$$\eta_{\scriptscriptstyle I} = \eta_{\scriptscriptstyle D} \eta_{\scriptscriptstyle R} \eta_{\scriptscriptstyle I}$$

Redundancia

 η_R

Ductilidad

 η_D

Importancia de la falla η_I

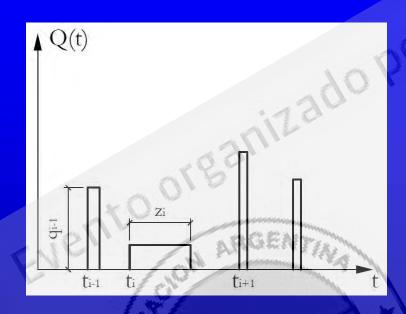
Disminuyo las cargas de diseño cuando espero una falla con "aviso" o menor consecuencia:

$$\eta = 0.95$$
 $\beta = 3.5 \longrightarrow \beta = 3.2$
Pf = $2.3 \times 10^{-4} \rightarrow \text{Pf} = 6.9 \times 10^{-4}$

Más redundancia (múltiples líneas de falla) Más ductilidad (más absorción de energía) Menor importancia (menores consecuencias de la falla)

Aumento las cargas de diseño cuando espero una falla frágil o mayor consecuencia:

$$\eta = 1.05$$
 $\beta = 3.5 \longrightarrow \beta = 3.8$
Pf = 2.3x10⁻⁴ \Rightarrow Pf= 0.7x10⁻⁴


Menos redundancia (falla sin niveles mínimos de red.) Menos ductilidad (componentes con falla fragil) Mayor importancia (mayores consecuencias de la falla)

Ecuaciones de diseño – LRFD – Máximos en la vida útil

$$Q(t) = X_1(t) + X_2(t) + ... + X_n(t)$$

Ecuaciones de diseño – LRFD – Máximos en la vida útil

$$Q(t) = X_1(t) + X_2(t) + ... + X_n(t)$$

Tasa de ocurrencia (Proceso de Poisson) Duración, $F_z(z)$ Intensidad, $F_o(q)$

 $Q^{M} = \max Q(t), \quad 0 < t < T_{R}$ Inabordable

Se consideran dos variables aleatorias por cada acción,

$$\mu^{M}, \delta^{M}$$

$$X^A$$
 Valor instantáneo $F_{XA}(x)=P(X^A \le x \text{ en un instante cualquiera})$

$$\mu^{A}, \delta^{A}$$

Ecuaciones de diseño – LRFD – Máximos en la vida útil

$$Q(t) = X_1(t) + X_2(t) + ... + X_n(t)$$

QM = $\max Q(t)$, 0< t < TR

Se consideran dos variables aleatorias por cada acción,

 X^{M} Máximo en 75 años $F_{XM}(x)=P(x^{M} \le x \text{ en 75 años})$

 $u^{\mathsf{M}}.\delta^{\mathsf{M}}$

 X^A Valor instantáneo $F_{xA}(x)=P(x^A \le x \text{ en un instante cualquiera})$

 μ^A, δ^A

REGLA DE TURKSTRA

$$Q^{M} = \max \begin{cases} X_{1}^{M} + X_{2}^{A} + ... + X_{n}^{A} \\ X_{1}^{A} + X_{2}^{M} + ... + X_{n}^{A} \\ X_{1}^{A} + X_{2}^{A} + ... + X_{n}^{M} \end{cases}$$

$$\boldsymbol{\alpha}_{Q^{M}}^{M} = \begin{cases} \alpha_{X_{1}}^{M} + \alpha_{X_{1}}^{A} + ... + \alpha_{X_{1}}^{A} \\ \alpha_{X_{1}}^{A} + \alpha_{X_{1}}^{M} + ... + \alpha_{X_{1}}^{A} \end{cases}, \quad \boldsymbol{\sigma}_{Q}^{2} = \begin{cases} \boldsymbol{\sigma}_{X_{1}}^{2} + \sum_{i \neq 1} \boldsymbol{\sigma}_{X_{i}}^{2} \\ \boldsymbol{\sigma}_{X_{2}}^{2} + \sum_{i \neq 2} \boldsymbol{\sigma}_{X_{i}}^{2} \\ \boldsymbol{\sigma}_{X_{1}}^{2} + \alpha_{X_{1}}^{A} + ... + \alpha_{X_{1}}^{M} \end{cases}$$

$$\phi R_n \ge \sum_{i=1}^n \eta_i \gamma_i Q_i$$

Ecuaciones de diseño - LRFD

- ESTADO LÍMITE DE RESISTENCIA
 - RESISTENCIA I = Uso Normal, 1.25 DD +1.75 LL (sin viento)
 - **RESISTENCIA II** = LL menor σ , 1.25 DD + 1.35 LL (sin viento)
 - RESISTENCIA III = (WL>25 m/s), 1.25 DD + 1.40 WL (sin LL)
 - RESISTENCIA IV = (DD/LL>7, Luz > 72 m), 1.50 DD (sin LL)
 - RESISTENCIA V = (WL < 25 m/s), 1.25 DD + 1.35 LL + 1.40 WL</p>

EVENTOS EXTREMOS

- I-TERREMOTOS
- II CARGAS EXPLOSIVAS
- II CARGAS DE HIELO
- II -COLISION DE VEHICULO
- II -COLISION DE EMBARCACION

Los coeficientes de combinación de acciones surgen de la teoría de probabilidades y dependen de las estadísticas de cada país y de la definición de los valores nominales de las acciones

CONCLUSIONES

- Importancia de diseños y reglamentos con base probabilística
- Los puentes pueden fallar por muchas causas (hidráulicas, colisiones)
- Incrementar la seguridad de solo una de las causas de falla incrementa los costos pero no reduce la probabilidad de falla
- Los coeficientes de combinación de acciones surgen de la teoría de probabilidades y dependen de las estadísticas de cada país y de la definición de los valores nominales de las acciones
- Es necesario contar con estadísticas propias de tránsito $\binom{\mu}{X_n}$ y de fallas para ajustar los valores reglamentarios de la AASHTO a nuestra realidad

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

APLICACIÓN DE LOS CRITERIOS DE SEGURIDAD A PUENTES - CALIBRACIÓN

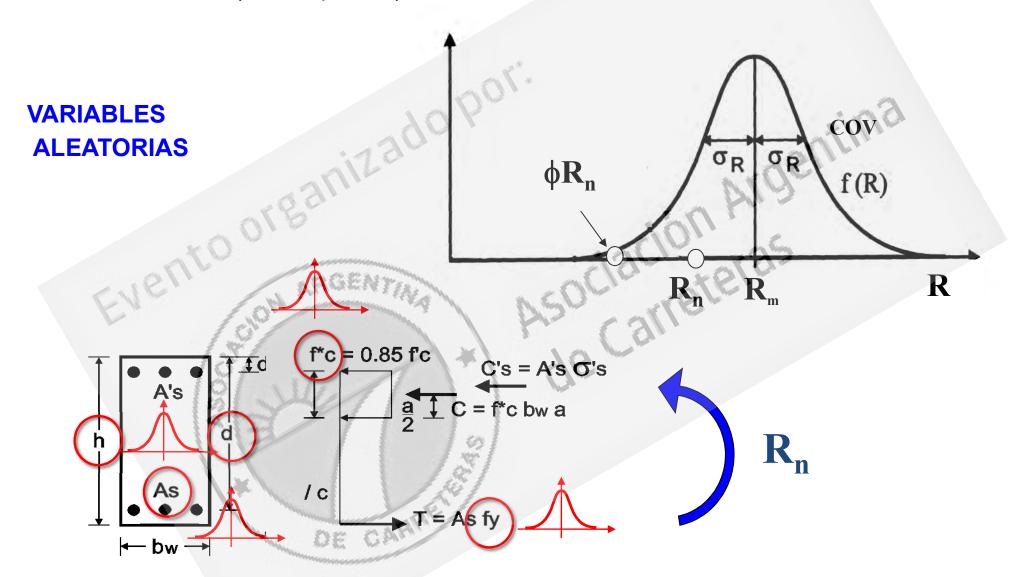
Estados límite de resistencia ("Strength limit states")

Estados límite relacionados con la resistencia y la estabilidad durante la vida de diseño

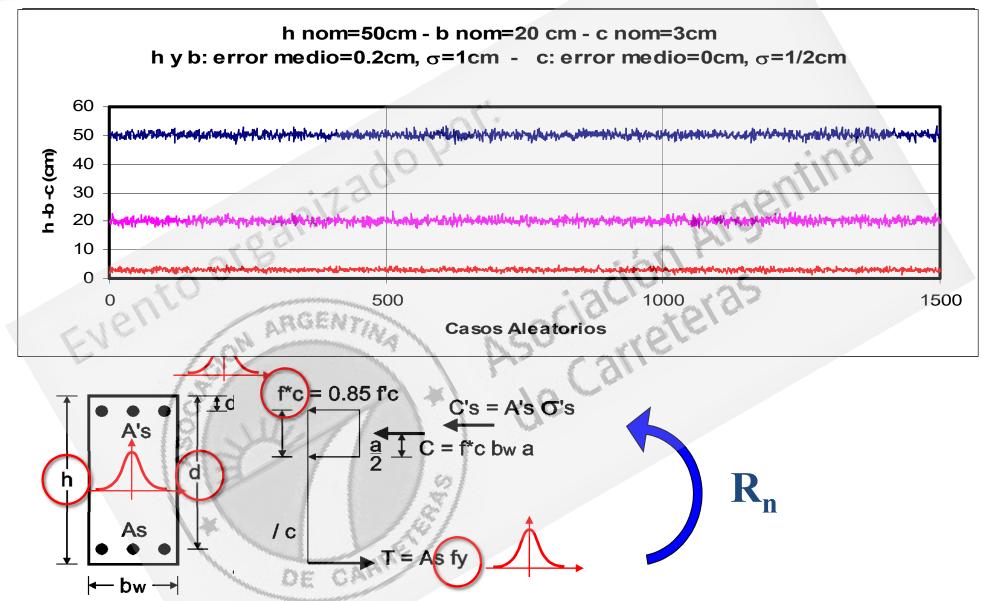
RESISTENCIA I – Combinación de cargas básicas correspondiente al uso vehicular normal del puente, sin viento

El Reglamento especifica que "Se debe considerar el estado límite de resistencia para garantizar que se proporcionen resistencia y estabilidad, tanto local como global, para resistir las combinaciones de cargas especificadas, estadísticamente significativas, que se prevé que un puente experimentará en su vida de diseño."

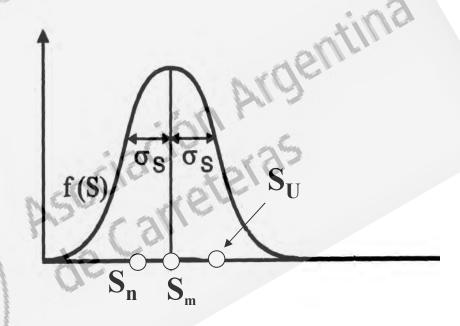
FORMATO LRFD:


 $1.25 \, \text{DC} + 1.50 \, \text{DW} + 1.75 \, (\text{LL} + \text{IM}) \le 0.90 \, \text{Rn}$

¿ POR QUÉ 1.25, 1.50, 1.75 y 0.90 ?

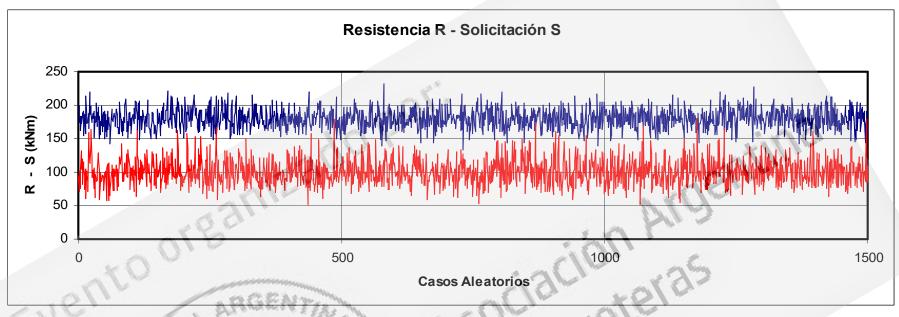

ELU: BAJA PROBABILIDAD DE FALLA (Pf)

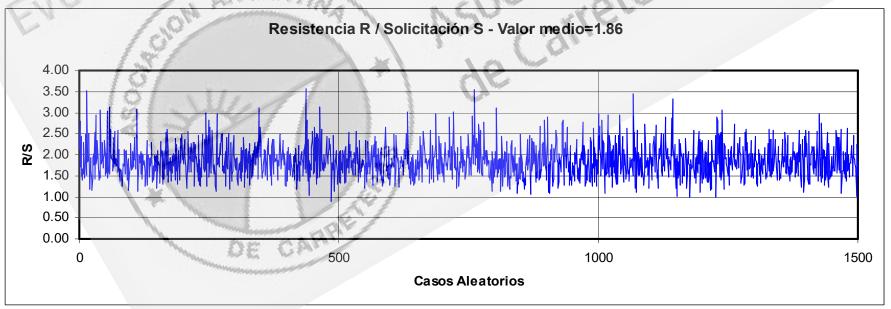
Tanto las acciones (lado izquierdo) como la resistencia (lado derecho), son



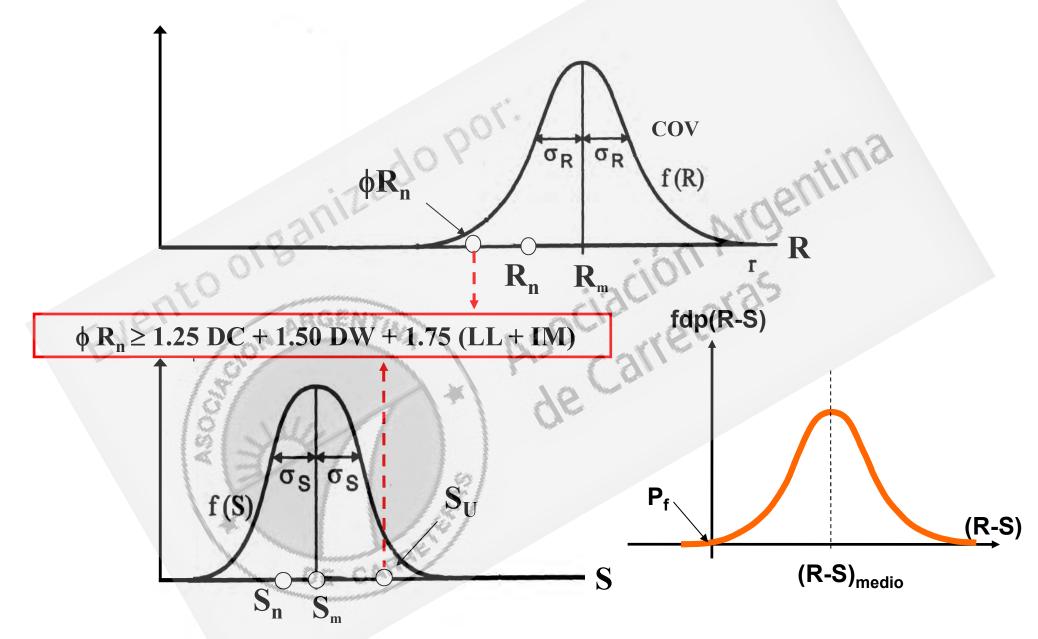
Tanto las acciones (lado izquierdo) como la resistencia (lado derecho), son

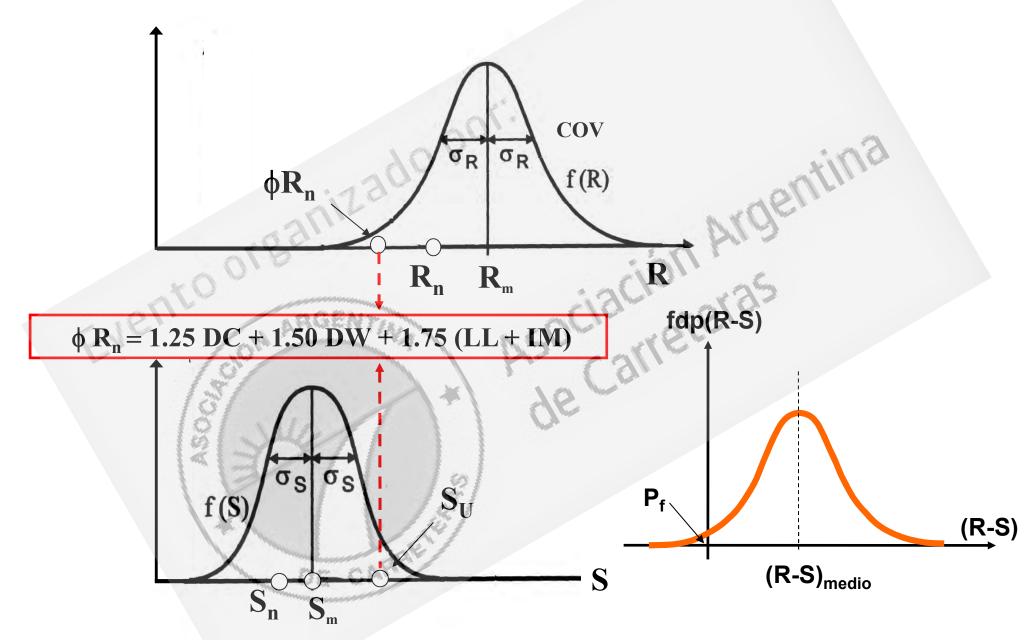
VARIABLES ALEATORIAS

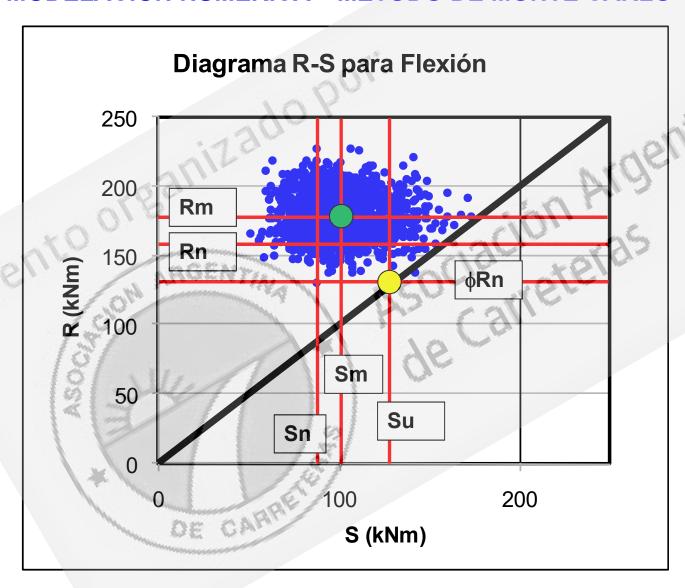


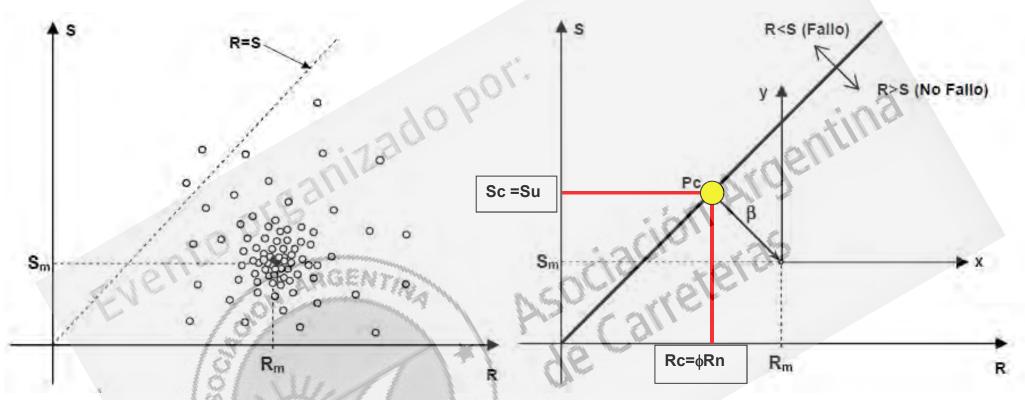


$$S_n = DC + DW + (LL + IM)$$


$$S_U = 1.25 DC + 1.50 DW + 1.75 (LL + IM)$$







MODELACIÓN NUMÉRICA - MÉTODO DE MONTE CARLO

ÍNDICE DE FIABILIDAD (β) y PROBABILIDAD DE FALLA (Pf)

$$x = (R-R_m) / \sigma_R$$

 $y = (S-S_m) / \sigma_S$

$$R = x \sigma_R + R_m$$

$$S = y \sigma_S + S_m$$

La condición de rotura (R = S) lleva a: $x \sigma_R + R_m = y \sigma_S + S_m$

Es decir que la ecuación de la recta R=S es: $y = (R_m-R_s)/\sigma_s + x (\sigma_R/\sigma_s)$ Se demuestra:

dist [(x=0,y=0) - recta (R=S)]=
$$\beta$$
 = (R-S)_m / σ _(R-S)

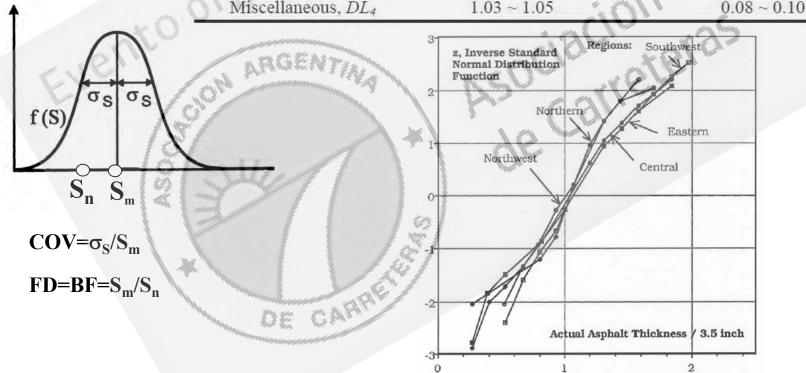
$$\rightarrow$$
 P_f = $\phi(-\beta)$

Pc (Rc,Sc): Punto Crítico (β mínimo)

OBJETIVOS GENERALES:

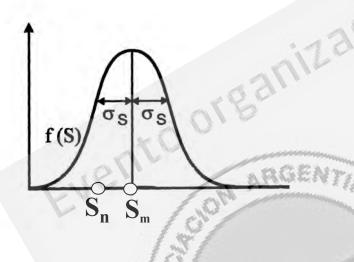
SEPARAR INCERTIDUMBRE EN ACCIONES (S) Y RESISTENCIAS (R)

ASEGURAR UN NIVEL DE FIABILIDAD ACEPTABLE e INDEPENDIENTE DE FACTORES SUBJETIVOS (LUCES, TIPO DE PUENTES, ETC)


CALIBRACIÓN DE UN FORMATO DE SEGURIDAD LRFD PASOS DE UN PROCEDIMIENTO (NOWAK):

- SELECCIONAR UN GRUPO DE PUENTES REPRESENTATIVOS, CUBRIENDO LAS TIPOLOGÍAS, LUCES Y MATERIALES USUALES
- ESTABLECER UNA BASE DE DATOS ESTADÍSTICOS SOBRE MATERIALES,
 GEOMETRÍAS Y ACCIONES
- DESARROLLAR MODELOS PROBABILÍSTICOS DE CARGAS Y RESISTENCIAS, EN TÉRMINOS DE FDA, FD (BF), COV.
- ESTABLECER Y AJUSTAR UNA METODOLOGÍA DE ANÁLISIS (MONTE CARLO, ETC)
- ESTABLECER EL NIVEL DE FIABILIDAD OBJETIVO, EN FUNCIÓN DEL ANÁLISIS DE LA SITUACIÓN (NO LRFD) PREVIA A LA CALIBRACIÓN
- \circ CALIBRAR LOS FACTORES DE MAYORACIÓN DE ACCCIONES (γ_i) Υ MINORACIÓN DE RESISTENCIAS (ϕ_i) MANTENIENDO LA FIABILIDAD β "CONSTANTE"

MODELOS PROBABILÍSTICOS DE CARGAS, EN TÉRMINOS DE FDA, FD (BF), COV.


Table 1.	Statistical Paramet	ers of Dead Load
Dead Load Component	Bias Factor	Coefficient of Variation
Factory made members, DL_1	1.03	0.08
Cast-in-place, DL_2	1.05	0.10
Wearing surface, DL_3	1.0	0.25
1 C 11 D.T.	102 105	0.00 0.10

CARRE

 MODELO PROBABILÍSTICO DE CARGA VIVA

 $COV = \sigma_S / S_m$

 $FD=BF=S_m/S_n$

Fig. B-5. Extrapolated Moments for Simple Spans.

 MODELOS PROBABILÍSTICOS DE CARGAS, EN TÉRMINOS DE FDA, FD (BF), COV.

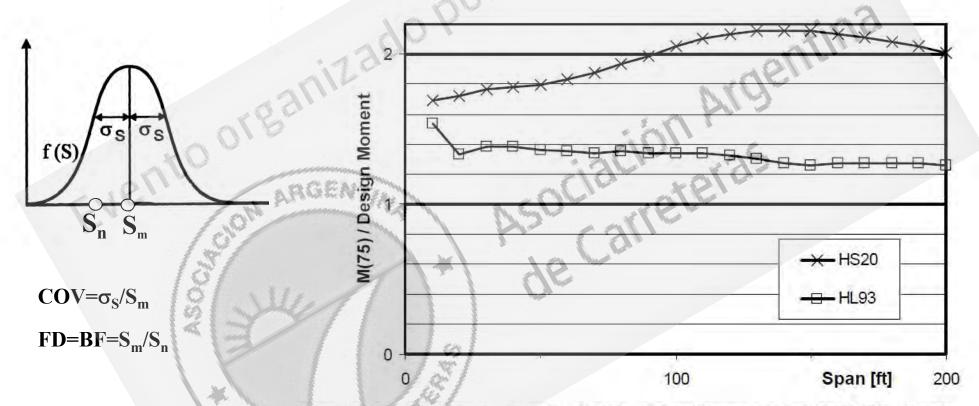
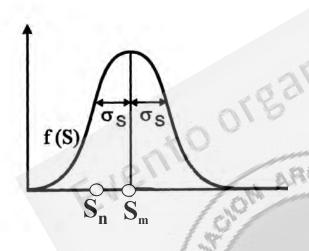
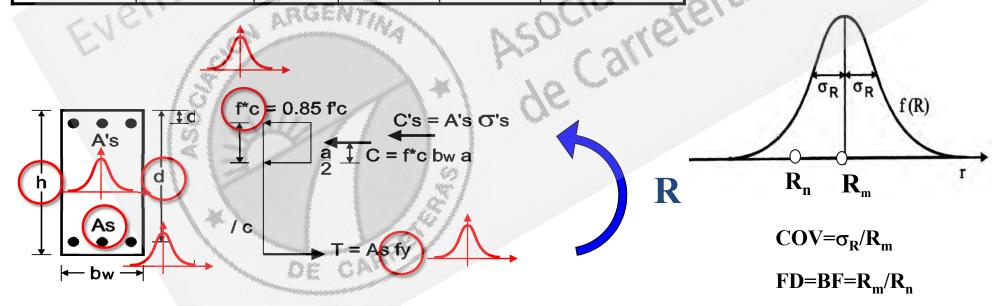



Figure 19 - Bias Factor for One Lane Loaded, Simple Span Moment; Ratio M(75)/M(HL93) and M(75)/M(HS20). ADTT = 5000

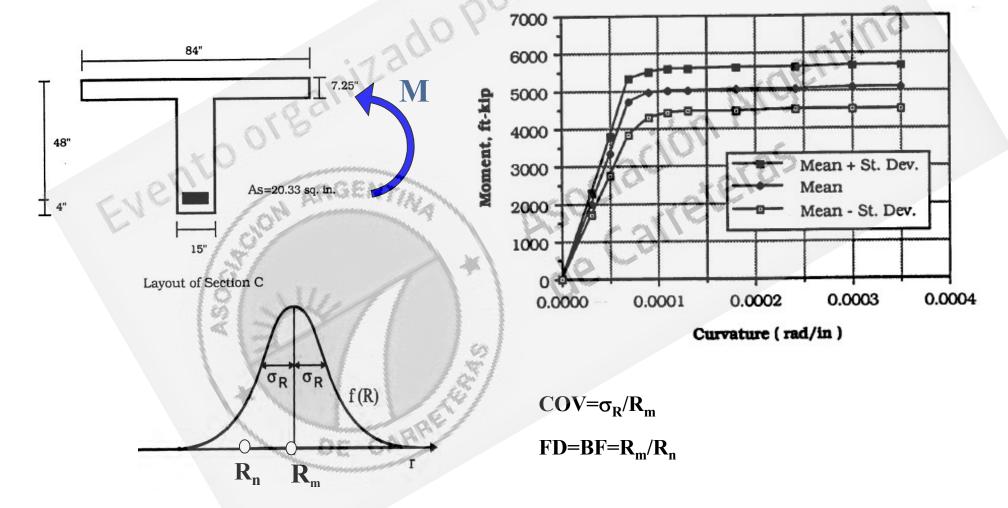
 MODELOS PROBABILÍSTICOS DE CARGAS, EN TÉRMINOS DE FDA, FD (BF), COV.

$$COV = \sigma_S / S_m$$

$$FD = BF = S_m / S_n$$


Table 20.	Bias	Factors	for	Live	Load

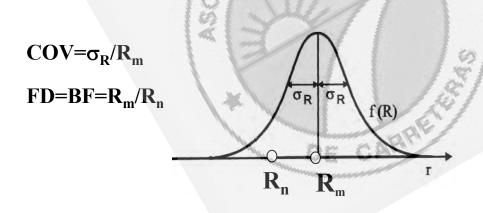
,	Bias Factor (HL-93)						
	ADTT = 1000	ADTT = 5000					
One Lane Loaded:	300						
- simple span moment	1.23 - 1.36	1.26 - 1.38					
- shear	1.17 - 1.28	1.21 - 1.32					
- negative moment	1.20 - 1.33	1.23 - 1.36					
Two Lanes Loaded:							
- simple span moment	1.08 - 1.15	1.10 - 1.20					
- shear	1.04 - 1.14	1.08 - 1.18					
- negative moment	1.10 - 1.22	1.14 - 1.26					

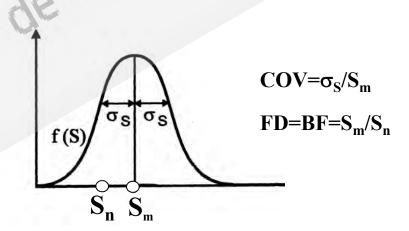

 MODELOS PROBABILÍSTICOS DE RESISTENCIA, EN TÉRMINOS DE FDA, FD (BF), COV.

Parámetro de la fdp ↓	f'c _{EST} (compres.)	fy	h, b, s (error)	recub (error)	fc _{EST} (tracción)
Media	1.7f'c+8	465	0	0	0.5[f'c _{EST}] ^{1/2}
COV	0.175	0.085	s = 1	s = 1	0.175

 MODELOS PROBABILÍSTICOS DE RESISTENCIA, EN TÉRMINOS DE FDA, FD (BF), COV.

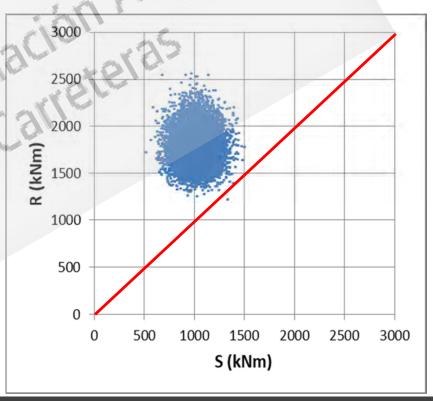
 MODELOS PROBABILÍSTICOS DE RESISTENCIA, EN TÉRMINOS DE FDA, FD (BF), COV.


Table 21. Statistical Parameters of Component Resistance


Type of Structure	Material Fabricati F M	and on factors,	Profession	nal factor,	r. Resistance, R	
03	λ	V	λ	V	A LA	V
Non- Composite steel girder	'5	-				
Moment (compact)	1.095	0.075	1.02	0.06	1.12	0.10
Moment (non-com.)	1.085	0.075	1.03	0.06	1.12	0.10
Shear	1.12	0.08	1.02	0.07	1.14	0.105
Composite steel girders	1/ /		1	311,		
Moment	1.07	0.08	1.05	0.06	1.12	0.10
Shear	1.12	0.08	1.02	0.07	1.14	0.105
Reinforced concrete						
Moment	1.12	0.12	1,02	0.06	1.14	0.13
Shear w/steel	1.13	0.12	1.075	0.10	1.20	0.155
Shear no steel	1.165	0.135	1.20	0.10	1.40	0.17
Prestressed concrete	ARE 104					
Moment	1.04	0.045	1.01	0.06	1.05	0.075
Shear w/steel	1.07	0.10	1.075	0.10	1.15	0.14

 MODELOS PROBABILÍSTICOS CONDENSADOS DE RESISTENCIA y CARGAS, EN TÉRMINOS DE FDP, FD (BF), COV - RESUMEN

	VARIABLE	Función de Distribución de Probabilidad	FACTOR DE DESVÍO (Bias Factor)	Argoviii
1	R (Resistencia)	Lognormal	1.12	0.10
	DC (peso Hn)	Normal	1.05	0.10
1	DW (peso carpeta)	Normal	1.00	0.25
	L (sobrecarga)	Normal	1.18	0.18



ESTABLECER Y AJUSTAR UNA METODOLOGÍA DE ANÁLISIS: MONTE CARLO

Parámetro	os de las d	distr	ibuciones:					1	
								4	
Resistenc	ia(R)		Peso Propi	o (DC) :		Peso Prop	oio (DW) :	Sobrecar	ga (L) :
pdf LogNor	mal		pdf Normal			pdf Norma		pdf Norma	al
AASHTO			Hormigón			Asfalto		Sobrecarg	ga
R n =	1600		DC n =	242.95		DW n =	54.48	L n =	602.76
Bias R =	1.12		Bias DC =	1.05		Bias DW =	1.00	Bias L =	1.18
R m =	1792		DC m =	255.1		DW m=	54.48	L m =	711.257
COV =	0.10		COV =	0.10		COV =	0.25	COV =	0.18
σ=	179		σ=	25.51		σ =	13.62	σ=	128.03
μ LNR=	7.48628		*0					α =	30.86
σ LNR=	0.09975				-	Chi de la con	Manager 1	β =	23.04
	1111			3		The state of the		L gamma	500

						Pf = 3.40E-04
Nominal =	243	54	603	900	1600	$\beta = 3.4$
Media =	255	54	711	1020	1794	0.57
Desvest =	25	14	128	131	180	0.17
		101		33.		- N
		Acción	The state of	S	R	In(R1/S)
i	DC	DW	L	DC+DW+L		0
	kNm	kNm	kNm	kNm	kNm	3 63 3
1	255	60	668	982	1835	0.6250878
2	252	78	646	976	2056	0.7444699
3	274	86	739	1099	1519	0.3233466
4	243	63	753	1059	1628	0.4295422
5	225	47	753	1025	1747	0.5330848
6	253	60	591	904	1540	0.5326666
7	255	64	783	1103	1348	0.2006118
8	283	55	756	1093	1702	0.4424345

Rn =	1600.3
DCn =	242.95
DWn =	54.48
Ln=	602.76
(1.25DCn + 1.5 DWn + 1.75L)/0.9 =	1600.3

 ESTABLECER EL NIVEL DE FIABILIDAD OBJETIVO, EN FUNCIÓN DEL ANÁLISIS DE LA SITUACIÓN (NO LRFD) PREVIA A LA CALIBRACIÓN

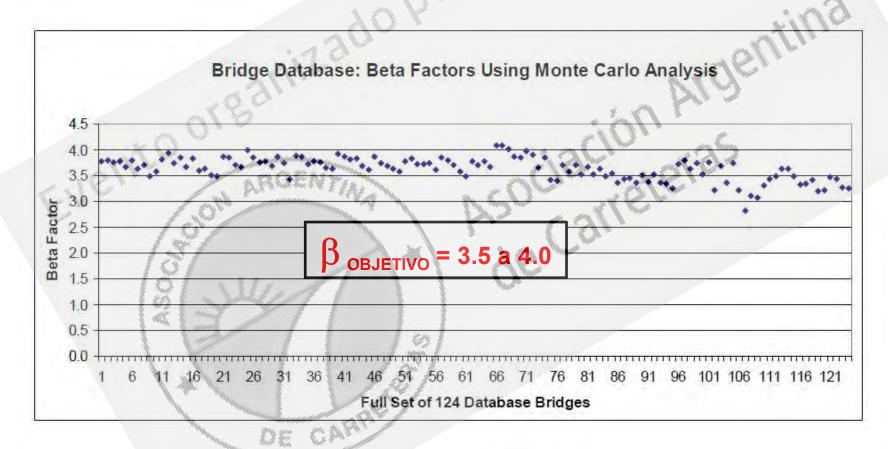
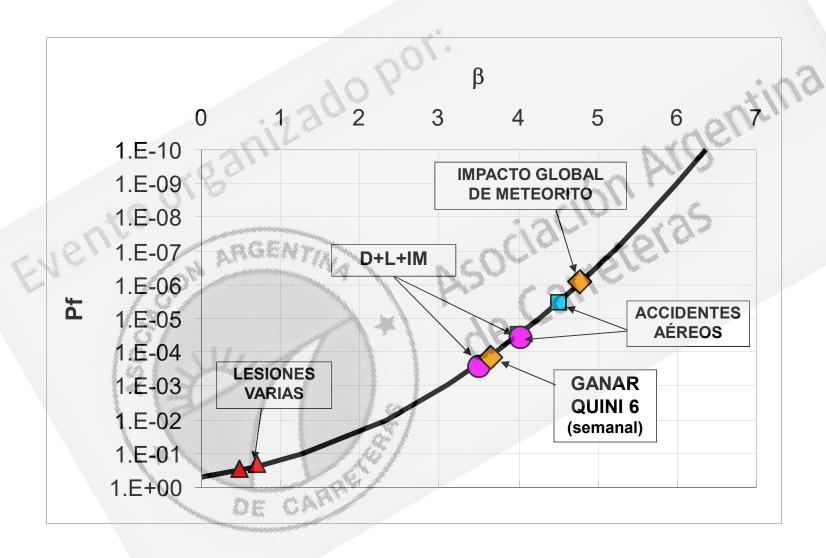



Figure 5 – Monte Carlo Results for All Bridges in the Database

FIABILIDAD ASOCIADA A EVENTOS POSIBLES

CALIBRAR LOS FACTORES DE MAYORACIÓN DE ACCIONES (γ_i) Y MINORACIÓN DE RESISTENCIAS (ϕ_i) MANTENIENDO LA FIABILIDAD β "CONSTANTE". NOWAK et al (1993)

APPENDIX F Load and Resistance Factors

APPENDIX F Load and Resistance Factors

LOAD FACTORS
$$\gamma_i = \lambda_i (1 + kV_i)$$
 (F-1)

Table F-2. Considered Sets of Load Factors.

Table F-2. Considered Sets of Load Factors.

Load Component	k = 1.5	k = 2.0 $k = 2.5$
Dead load, Di	1.15	1.20 1.24
Dead load, D2	1.20	1.25
Dead load, D ₃	1.375	1.50 1.65
Live load (with impact)	1.40-1.50	1.50-1.60 1.60-1.70

Recommended values of load factors correspond to k = 2. For simplicity of the designer, one factor is specified for D_1 and D_2 , $\gamma = 1.25$. For D₃, weight of asphalt, $\gamma = 1.50$. For live load and impact, the value of load factor corresponding to k = 2 is $\gamma = 1.60$. However, a more conservative value of $\gamma = 1.70$ is proposed for the LRFD code.

(Finalmente se adoptó $\gamma = 1.75$ para incrementar la TMDA)

 \circ CALIBRAR LOS FACTORES DE MAYORACIÓN DE ACCCIONES (γ_i) Υ MINORACIÓN DE RESISTENCIAS (ϕ_i) MANTENIENDO LA FIABILIDAD β "CONSTANTE"

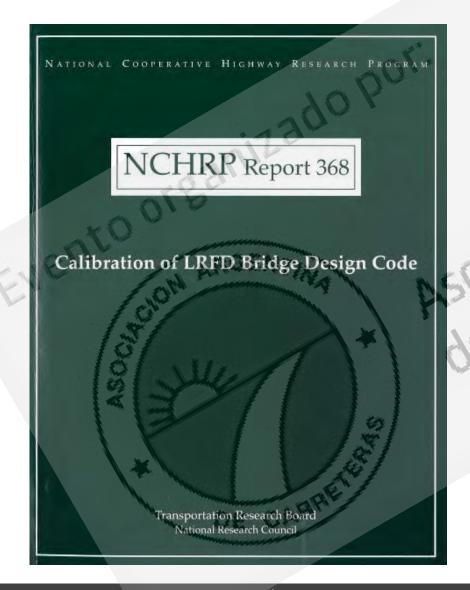
RELIABILITY-BASED RESISTANCE FACTORS

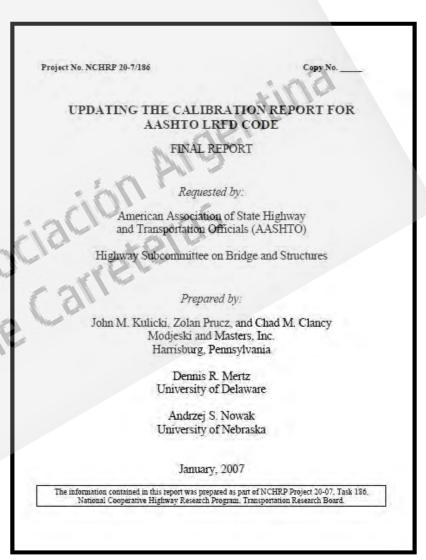
Table F-3. Considered Resistance Factors.

Material	Limit State	Resistance Lower	Factors, ø Upper
Non-Composite Steel	Moment	0.95	1.00
	Shear	0.95	1.00
Composite Steel	Moment	0.95	1.00
	Shear	0.95	1.00
Reinforced Concrete	Moment	0.85	0.90
	Shear	0.90	0.95
Prestressed Concrete	Moment	0.95	1.00
	Shear	0.90	0.95

Table F-6. Reliability Indices and Resistance Ratios for LRFD Code, Simple Span Moments in Reinforced Concrete T-Beam Bridges.

Span	Space	Lo	ad	R(HS20)	φ =	0.85	φ=	0.90	φ =	0.85	φ=	0.90
(ft)	(ft)	Eff	ect	(k-ft)	γ=	1.6	γ=1.6		$\gamma = 1.7$		$\gamma = 1.7$	
		mQ	σ		r	β	r	β	r	β	r	β
											1	
30	4	361	44	467	1.34	4.00	1.27	3.68	1.40	4.24	1.33	3.93
30	6	467	58	655	1.24	4.01	1.18	3.69	1.30	4.25	1.23	3.94
30	8	566	71	841	1.18	4.02	1.11	3.69	1.23	4.23	1.16	3.95
30	10	665	84	1032	1.13	4.02	1.07	3.70	1.18	4.27	1.12	3.95
30	12	801	97	1277	1.09	4.01	1.03	3.69	1.14	4.25	1.07	3.94
60	4	1100	114	1558	1.18	3.95	1.11	3.62	1.22	4.15	1.15	3.83
60	6	1481	151	2250	1.09	3.95	1.03	3.62	1.13	4.15	1.07	3.82
60	8	1767	183	2827	1.04	3.96	0.99	3.63	1.08	4.17	1.02	3.84
60	10	2116	216	3502	1.01	3.96	0.95	3.63	1.04	4.15	0.99	3.84
60	12	2458	249	4176	0.98	3.96	0.92	3.63	1.01	4.16	0.96	3.83
90	4	2561	230	3541	1.15	3.82	1.09	3.47	1.18	3.97	1.12	3.64
90	6	3228	293	4719	1.10	3.84	1.04	3.50	1.13	4.0	1.07	3.67
90	8	3774	347	5757	1.06	3.87	1.00	3.53	1.09	4.04	1.03	3.71
90	10	4466	409	7015	1.03	3.87	0.97	3.53	1.06	4.04	1.00	3.71
90	12	5200	472	8345	1.00	3.87	0.95	3.53	1.03	4.03	0.98	3.70
120	4	4501	387	6133	1.15	3.73	1.08	3.38	1.17	3.8	1.11	3.52
120	6	5587	482	7965	1.10	3.77	1.04		1.13	3.9	1.07	3.57
120	8	6646	575	9796	1.07	3.79	1.01	3.44	1.10	3.9	1.04	3.59
120	10	7874	679	11888	1.05	3.79	0.99	3.44	1.07	3.98	1.01	3.59
120	12	9182	788	14109	1.03		0.97		1.05	3.92		3.58




Table F-7. Reliability Indices and Resistance Ratios for LRFD Code, Simple Span Moments in Prestressed Concrete Girder Bridges.

Span	Space	L	oad	R(HS20)	φ =	0.95	φ=	= 1.00	φ=	0.95	φ=	1.00
(ft)	(ft)	Effect		(k-ft)	γ = 1.6		γ=1.6		γ = 1.7		γ = 1.7	
		mQ	σ		r	β	r	β	г	β	r	β
30	4	357	43	441	1.26	3.86	1.20	3.43	1.32	4.24	1.26	3.80
30	6	463	57	622	1.17	3.86	1.11	3.43		4.2		3.80
30	8	561	70	801	1.10	3.85	1.05	3.42	1.15	4.2	1.09	3.80
30	10	663	83	988	1.05	3.85	1.00	3.42	1.10	4.23	1.05	3.80
30	12	765	95	1179	1.02	3.86	0.97	3.43	1.06	4.2	1.01	3.80
60	4	1144	108	1531	1.11	3.96	1.06	3.49	1.15	4.2	1.09	3.80
60	6	1442	142	2084	1.04	3.95	0.99	3.48	1.07	4.2	1.02	3.81
60	8	1716	173	2622	0.99	3.94	0.94	3.48	1.02	4.2	0.97	3.81
60	10	2011	204	3197	0.95	3.94	0.90	3.48	0.98	4.27	0.93	3.81
60	12	2312	234	3786	0.92	3.94	0.87	3.47	0.95	4.20	0.91	3.80
90	4	2506	197	3249	1.11	3.97	1.05	3.47	1.14	4.2	1.08	3.74
90	6	3071	253	4237	1.05	3.97	1.00	3.48	1.08	4.25	1.03	3.76
90	8	3590	306	5192	1.01	3.97	0.96	3.49	1.04	4.2	0.99	3.78
90	10	4162	360	6 2 29	0.98	3.97	0.93	3.48	1.01	4.2	0.96	3.77
90	12	4750	414	7300	0.95	3.96	0.90	3.48	0.98	4.24	0.93	3.76
120	4	4557	314	5786	1.11	3.93	1.05	3.42	1.13	4.1	1.08	3.64
120	6	5455	393	7275	1.06	3.97	1.01	3.46	1.09	4.2	1.04	3.70
120	8	6277	469	8705	1.03	3.98	0.98	3.48	1.06	4.23	1.00	3.73
120	10	7198	549	10281	1.00	3.98	0.95	3.48	1.03	4.2	0.98	3.73
120	12	8152	629	11917	0.98	3.97	0.93	3.47	1.01	4.2	0.96	3.73
200	4	11826	733	15323	1.07	3.88	1.01	3.35	1.08	4.05	1.03	3.53
200	6	13928	885	18840	1.03	3.94	0.98	3.42	1.05	4.13	1.00	3.61
200	8	15848	1036	22195	1.00	3.98	0.95	3.46	1.02	4.17	0.97	3.66
200	10	18059	1204	25956	0.98	3.98	0.93	3.46	1.00	4.18	0.95	3.66
200	12	20375	1382	29880	0.96	3.97	0.91	3.45	0.98	4.1	0.93	3.66

REFERENCIAS ESENCIALES

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

ESTADOS LÍMITE, ACCIONES, FACTORES DE CARGA, COMBINACIÓN DE ESTADOS DE CARGA

OBJETIVOS DEL DISEÑO ESTRUCTURAL

Asegurar con un cierto nivel de <u>confiabilidad</u> y para el total de la <u>vida útil</u> definida para la construcción:

- ✓ RESISTENCIA y ESTABILIDAD
- ✓ FUNCIONALIDAD PARA LOS USOS PREVISTOS
- ✓ DURABILIDAD

Optimizando el consumo de recursos para lograr:

- ✓ MAXIMA ECONOMIA
- ✓ MAXIMA SUSTENTABILIDAD

Un abordaje posible para alcanzar estos objetivos se basa en considerar el concepto de ESTADOS LIMITES

DISEÑO ESTRUCTURAL MEDIANTE ESTADOS LIMITE

ESTADO LÍMITE

es un evento no deseado caracterizado por una magnitud física para la que se define un valor extremo. De superarse dicho límite, se considera que lo diseñado deja de ser apto para su uso, ya sea por ruina o por una pérdida significativa de la funcionalidad.

Estado Límite Último (ELU)

es una situación que se intenta evitar porque implica el colapso parcial o total de la estructura, al verse superada la capacidad resistente o al perderse la estabilidad.

Estado Límite de Servicio (ELS)

es una situación que se intenta evitar porque produce una pérdida de la funcionalidad o un deterioro apreciable de la estructura (sin riesgo inminente).

EJEMPLOS DE ESTADOS LIMITE EN DISEÑO ESTRUCTURAL

Ejemplos de Estados Límite Últimos (ELU)

- ELU de agotamiento por tensiones normales (flexión, tracción, compresión)
- ELU de agotamiento por tensiones tangenciales (corte, torsión, punzonado)
- ELU de inestabilidad del equilibrio (pandeo)
- ELU de estabilidad (vuelco, deslizamiento)

Ejemplos de Estados Limite de Servicio (ELS)

- ELS de deformación excesiva
- ELS de vibración excesiva
- ELS de durabilidad
- ELS de fisuración

EL PROBLEMA DEL DISEÑO CONFIABLE

Para un tipo de proyecto determinado, es necesario:

- Reconocer los estados limites que resultan relevantes y condicionan el diseño
- · Definir las magnitudes que caracterizan a cada estado limite
- Establecer como evaluar la magnitud de la demanda que resulta esperable durante la vida útil de lo diseñado
- Establecer como evaluar la capacidad de respuesta de lo diseñado
- Establecer el margen mínimo que deberá ofrecer la capacidad por encima de la demanda, de manera de alcanzar una cierta confiabilidad en la performance de lo diseñado, dadas las inevitables incertidumbres

No es un problema trivial, requiere conocimientos, investigación, datos estadisticos, acuerdos interdisciplinarios CONVIENE QUE QUEDE ESTABLECIDO EN CODIGOS DE DISEÑO

EL PROBLEMA DEL DISEÑO CONFIABLE

- Definir estados límites relevantes y las magnitudes asociadas
- Definir evaluación de la demanda esperable durante la vida útil
- Definir evaluación de la capacidad de respuesta de lo diseñado
- Definición márgenes de seguridad mínimos (capacidad > demanda)

- TIPOS DE ESTADOS LIMITES
 - LISTA DE ESTADOS LIMITES DE CADA TIPO
 - LISTA DE ESTADOS DE CARGA
 - VALORES DE LAS CARGAS
 - COMBINACIONES PARA C/TIPO DE E. LIMITE

METODOS SEGÚN NATERIAL Y LA MAGNITUD ASOCIADA A CADA ESTADO LIMITE

CALIBRACION GENERAL DEL REGLAMENTO
LRFD SEMI-PROBABILISTA ORIENTADA A UNA
CIERTA (Pf) UNIFORME

¿Cómo concreta esto CIRSOC 801 para PUENTES CARRETEROS?

LAS CARGAS A CONSIDERAR Y SU DENOMINACIÓN ABREVIADA

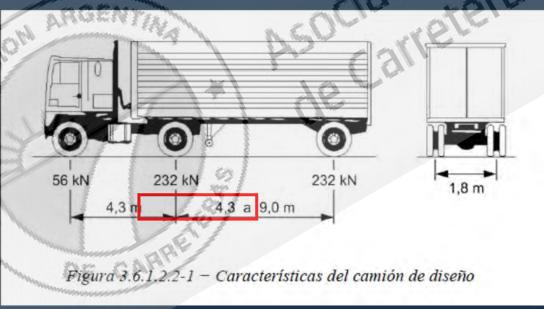
Según CIRSOC 801, en el diseño de puentes se deben considerar las siguientes acciones permanentes y transitorias:

CC	PESO PROPIO DE LOS COMPONENTES ESTRUCTURALES Y ACCESORIOS NO ESTRUCTURALES
DW	PESO PROPIO DE LAS SUPERFICIES DE DESGASTE Y LAS INSTALACIONES
EH	EMPUJE HORIZONTAL DEL SUELO
EL	TENSIONES RESIDUALES ACUMULADAS DEL PROCESO CONSTRUCTIVO, INCLUYENDO FUERZAS SECUNDARIAS DE TESADO
ES	SOBRECARGA PERMANENTE SOBRE EL TERRENO
EV	PRESIÓN VERTICAL DEL SUELO
BR	FUERZA DE FRENADO DE LOS VEHÍCULOS
CE	FUERZA CENTRÍFUGA DE LOS VEHÍCULOS
DD	FRICCIÓN NEGATIVA
CR	DEFORMACIÓN DIFERIDA
СТ	COLISIÓN DE VEHÍCULOS
CV	COLISIÓN DE EMBARCACIONES

ESTADOS DE CARGA

EQ	SISMO
FR	FRICCIÓN
IC	HIELO
IM	INCREMENTO POR CARGA VEHICULAR DINÁMICA
LL	SOBRECARGA VEHICULAR
LS	SOBRECARGA VIVA SOBRE EL TERRENO
PL	SOBRECARGA PEATONAL
SE	ASENTAMIENTO
SH	CONTRACCIÓN
TG	GRADIENTE DE TEMPERATURA
TU	VARIACIÓN UNIFORME DE TEMPERATURA
WA	CARGA HIDRÁULICA Y PRESIÓN DEL FLUJO DE AGUA
WL	VIENTO SOBRE LA SOBRECARGA
WS	VIENTO SOBRE LA ESTRUCTURA
	The CARPY

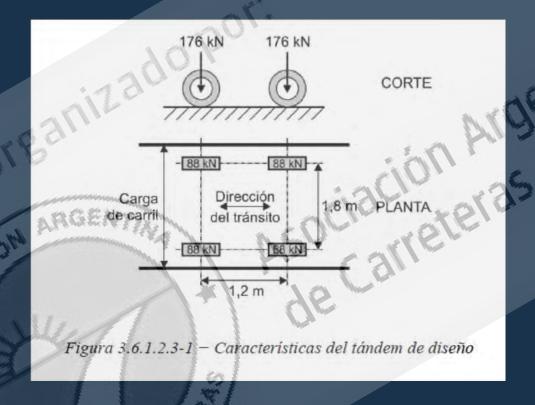
- Para cada uno de estos estados de carga, el Capítulo 3 de CIRSOC 801 brinda directivas exhaustivas y detalladas para la estimación de los valores a considerar en el diseño de un puente
- Por su importancia conceptual veremos con cierto detalle las acciones generadas por el tránsito sobre el puente:
 - sobrecarga vehicular
 - LS sobrecarga viva
 - PL sobrecarga peatonal
 - BR fuerza de frenado de los vehículos
 - **CE** fuerza centrífuga de los vehículos
 - IM incremento por carga vehicular dinámica
- ❖ A continuación, veremos a modo de ejemplo de la profundidad de lo ofrecido por CIRSOC 801, un estado de carga particular:
 - CV fuerza de colisión de una embarcación


SOBRECARGAS DE TRANSITO

CIRSOC 801 define las siguientes acciones para representar el tránsito de vehículos sobre el tablero, y que se conforman la hipótesis de carga

- 1. CAMIÓN DE DISEÑO
- 2. TANDEM DE DISEÑO
- 3. COEF. DE IMPACTO que se aplica al camión y al tandem pero <u>no</u> a la carga de carril
- 4. CARGA DE CARRIL DE DISEÑO (DISTRIBUIDA)

CAMION DE DISEÑO


ESTAS
CARGAS YA
INCLUYEN EL
INCREMENTO
DEL 60%

SOBRECARGAS DE TRANSITO

TANDEM DE DISEÑO

ESTAS
CARGAS YA
INCLUYEN EL
INCREMENTO
DEL 60%

El tándem de diseño consistirá en un par de ejes de 176 kN con una separación de 1,20 m. La separación transversal de las ruedas se deberá tomar como 1,80 m. Se deberá considerar un incremento por carga dinámica según lo especificado en el Artículo 3.6.2.

SOBRECARGAS DE TRANSITO

INCREMENTO POR CARGA DINAMICA

Tabla 3.6.2.1-1 - Incremento por Carga Dinámica, IM

Componente	IM O
Juntas del tablero – Todos los Estados Límite	75%
Todos los demás componentes Estado Límite de Fatiga y Fractura Todos los demás Estados Límite	15% 33%

CARGA DE CARRIL DE DISEÑO

3.6.1.2.4. Carga de Carril de Diseño

La carga de carril de diseño consistirá en una carga de 15 kN/m, uniformemente distribuida en dirección longitudinal. Transversalmente la carga de carril de diseño se supondrá uniformemente distribuida en un ancho de 3,00 m. Las solicitaciones debidas a la carga de carril de diseño no estarán sujetas a un incremento por carga dinámica.

DE CAR

ESTAS
CARGAS YA
INCLUYEN EL
INCREMENTO
DEL 60%

SOBRECARGAS DE TRANSITO

HIPOTESIS DE DISEÑO HL-13 AR

CIRSOC 801 define que la combinación de diseño será la mas exigente entre:

- 1. CAMION + CARGA DE CARRIL
- 2. TANDEM + CARGA DE CARRIL

La sobrecarga vehicular sobre las calzadas de puentes o estructuras incidentales, designada como HL-13_AR, consistirá en una combinación de:

- Camión de diseño o tándem de diseño, y
- Carga de carril de diseño.

A excepción de las modificaciones especificadas en el Artículo 3.6.1.3.1, cada carril de diseño considerado deberá estar ocupado ya sea por el camión de diseño o bien por el tándem de diseño, superpuesto con la carga del carril, cuando corresponda. Se supondrá que las cargas ocupan 3 m, transversalmente, dentro de un carril de diseño.

SOBRECARGAS DE TRANSITO

OTRAS DEFINICIONES

- 1. FACTOR DE PRESENCIA MULTIPLE (PROBABILIDAD DE SIMULTANEIDAD)
- 2. SOBRECARGAS PEATONALES
- 3. FUERZA DE FRENADO

3.6.1.6 Cargas Peatonales

Se deberá aplicar una carga peatonal de 3,6 x 10⁻³ MPa en todas las aceras de más de 600 mm de ancho, y esta carga se deberá considerar simultáneamente con la sobrecarga vehicular de diseño.

Los puentes exclusivamente para tráfico peatonal y/o ciclista se deberán diseñar para una sobrecarga de 4,1 x 10⁻³ MPa.

Número de carriles cargados	Factor de presencia múltiple, m
1	1,20
2	1,00
3	0,85
× 3	0,65

3.6.4 Fuerza de Frenado: BR

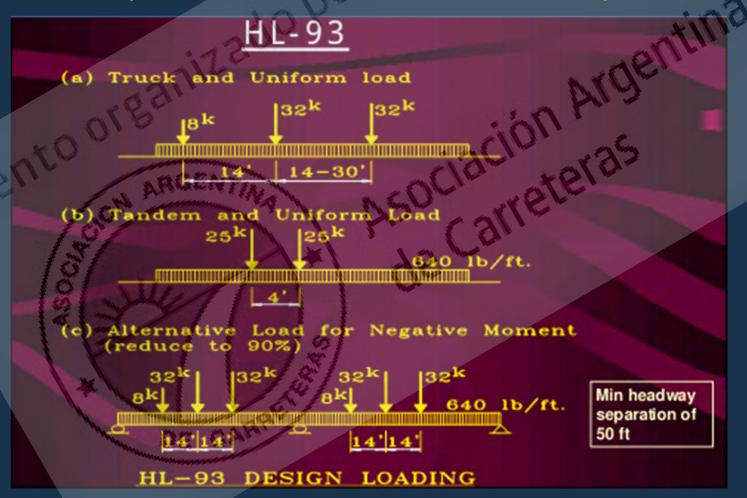
La fuerza de frenado se deberá tomar como el mayor de los siguientes valores:

- 25 por ciento de los pesos por eje del camión de diseño o tandem de diseño, o
- 5 por ciento del camión de diseño más la carga del carril ó 5 por ciento del tandem de diseño más la carga del carril.

SOBRECARGAS DE TRANSITO Y TRANSITO REAL

CAMION AASHTO hasta 2005

- EL HS 20 (CAMION DE DISEÑO)
- EL 3S2 (CAMION REAL, AUNQUE NO PERMITIDO, "EXCLUSION LOAD")



SOBRECARGAS DE TRANSITO Y TRANSITO REAL

HIPOTESIS DE TRANSITO HL-93 desde 2005

(EL CAMION TEORICO ES EL MISMO HS 20)

SOBRECARGAS DE TRANSITO Y TRANSITO REAL

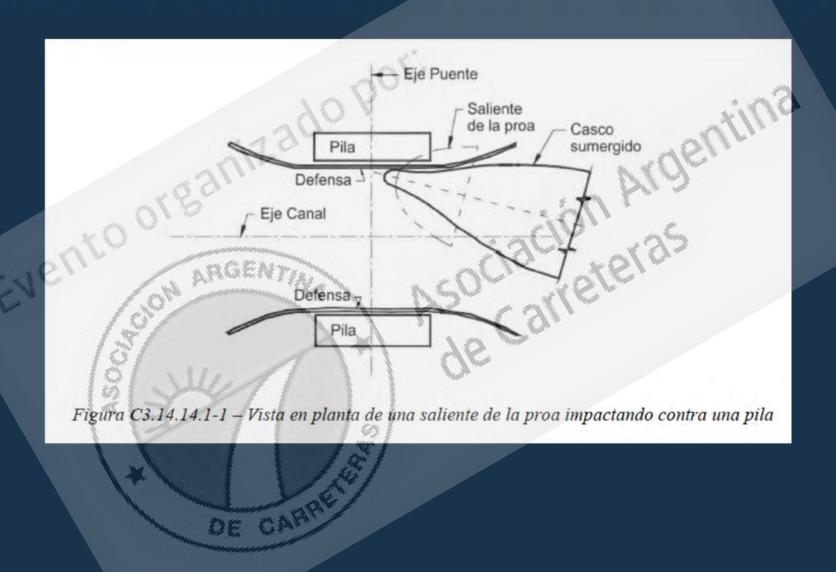
¿pero cuál es el vehículo REAL que se considera cubierto por la envolvente HL-93?

3.14.11. Fuerza de Colisión de una Barcaza en una Pila

A los fines del Artículo 3.14, la barcaza tolva estándar se deberá tomar como una barcaza Asociación Alba fluvial con las siguientes características:

= 10.70 mancho = 59.50 m longitud

profundidad $= 3.70 \, \text{m}$


calado vacío $= 0.55 \, \mathrm{m}$

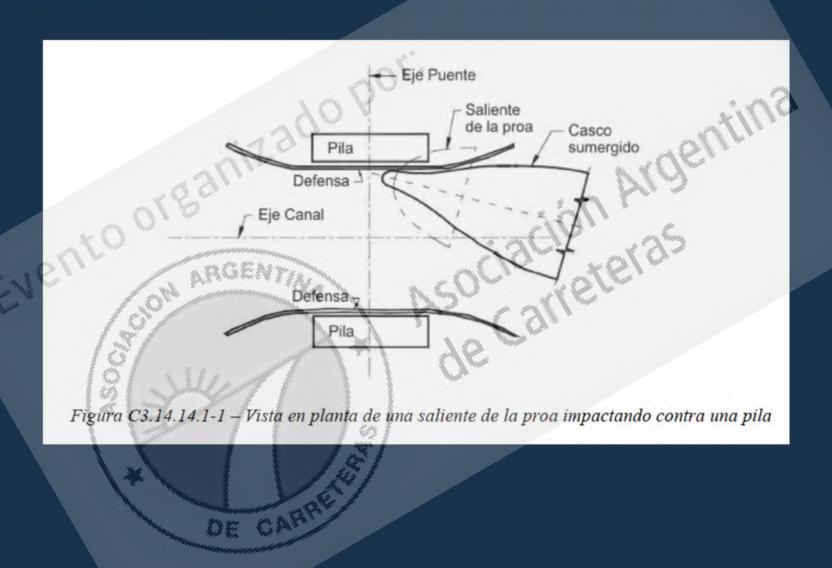
calado cargado = 2,70 m

DWT = 1700 tonne

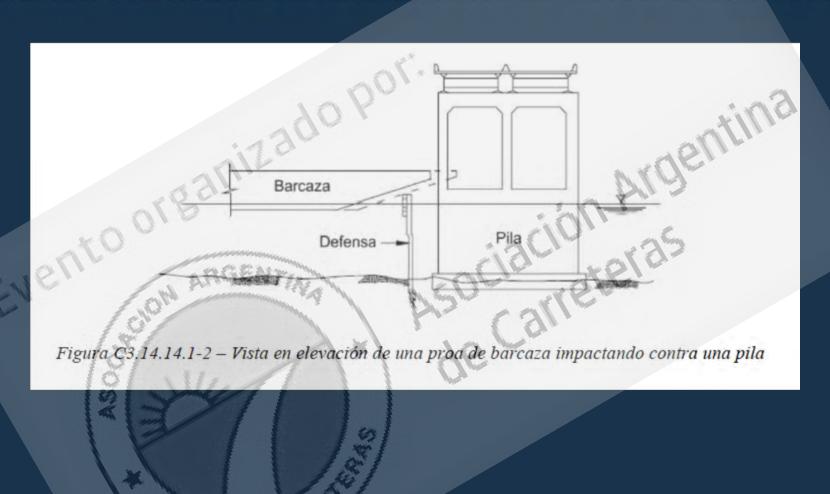
La fuerza de impacto sobre una pila por la colisión de una barcaza tolva estándar, se deberá tomar como:

3.14.12. Longitud de Daño de Proa de una Barcaza

(3.14.12-1) La longitud de daño horizontal de proa, correspondiente a una barcaza tolva estándar, se deberá tomar como:


$$a_B = 3.10 \left(\sqrt{1 + \frac{KE}{7700}} - 1 \right)$$

Donde:


longitud de daño de proa de la barcaza [m]

KE = energía de colisión de la embarcación, [kN·m]

DE CARR

DEFINICION DE ESTADOS LIMITE s/ CIRSOC 801

Estado límite: Condición más allá de la cual el puente o elemento deja de satisfacer los requisitos para los cuales fue diseñado

Se distinguen los siguientes EL:

- ✓ ESTADOS LÍMITE de RESISTENCIA "Strength limit states"
 - ✓ ESTADOS LÍMITE de SERVICIO "Service limit states"
- ✓ ESTADOS LÍMITE correspondientes a EVENTOS EXTREMOS "Extreme event limit states"
 - ✓ ESTADOS LÍMITE de FATIGA "Fatigue limit states"

TIPOS DE ESTADOS LIMITE s/ CIRSOC 801

ESTADOS LÍMITE DE RESISTENCIA

- Relacionados con la resistencia y la estabilidad durante la vida de diseño del puente
- Considerarlos implica proveer un margen de seguridad frente a situaciones de colapso (local, parcial o total)

ESTADOS LÍMITE DE SERVICIO

 Relacionados con la tensión, deformación y fisuración, bajo condiciones normales de operación

DE CAR

 Considerarlos implica limitar el valor de tensiones, deformaciones y anchos de fisura en las situaciones ordinarias

TIPOS DE ESTADOS LIMITE s/ CIRSOC 801

ESTADOS LÍMITE FRENTE A EVENTOS EXTREMOS

- Relacionados con eventos tales como sismos, acción del hielo y colisiones de vehículos, con períodos de recurrencia mayores que la vida de diseño del puente
- · Considerarlos implica buscar un cierto desempeño en la situación accidental

ESTADOS LÍMITE DE FATIGA

- Relacionados con los efectos de acciones frecuentes
- Considerarlos implica limitar las tensiones bajo esas cargas repetidas

Para cada uno de estos tipos de estados límites se definirán las combinaciones de estados de carga y los factores de carga correspondientes

CIRSOC 801 especifica:

Se debe considerar el estado límite de resistencia para garantizar que se proporcionen resistencia y estabilidad, tanto local como global, para resistir las combinaciones de cargas especificadas estadísticamente significativas que se prevé que un puente experimentará en su vida de diseño

La solicitación de diseño total que especifica CIRSOC 801 se tomará como:

donde:

$$\mathbf{Q} = \sum_{i} \eta_{i} \gamma_{i} \mathbf{Q}_{i}$$

- modificador de las cargas especificado en el Artículo 1.3.2
- Q solicitaciones producidas por las cargas especificadas
- γ_i factores de carga especificados en las Tablas 3.4.1-1 y 3.4.1-2

CIRSOC 801 establece 5 Estados Límite de Resistencia:

RESISTENCIA I Combinación de cargas básicas correspondiente al uso vehicular normal del puente, sin viento

RESISTENCIA II Combinación correspondiente al uso del puente por parte de vehículos de diseño especiales especificados por el Propietario, vehículos de circulación restringida, o ambos, sin viento

RESISTENCIA III Combinación correspondiente al puente expuesto a vientos con velocidades superiores a 25 m/s (90 km/h)

RESISTENCIA IV Combinación correspondiente a relaciones especiales entre los efectos provocados por las cargas permanentes y los provocados por las sobrecargas

RESISTENCIA V Combinación correspondiente al uso del puente por parte de vehículos normales con una velocidad del viento de 25 m/s (90 km/h).

Los factores de carga en cada estado límite de resistencia se agrupan según el tipo de cargas: permanentes, sobrecargas, accidentales

= factor de modificación de las cargas: factor relacionado con la ductilidad, redundancia e importancia operativa

Para cargas para las cuales es apropiado un valor máximo de γ_i : $\eta_i = \eta_D \ \eta_R \ \eta_I \geq 0.95$

$$\eta_i = \eta_D \ \eta_R \ \eta_1 \ge 0.95$$

Para cargas para las cuales es apropiado un valor mínimo de

$$\eta_i = \frac{1}{\eta_D \ \eta_R \ \eta_I} \le 1.0$$

DE CAR

factor relacionado con la ductilidad, según lo especificado en el Artículo 1.3.3 η_D

factor relacionado con la redundancia, según lo especificado en el Artículo 1.3.4 η_R

 factor relacionado con la importancia operativa, según lo especificado en el Artículo ηı 1.3.5

ACCIONES PERMANENTES (pesos)

En la tabla siguiente se omitieron los efectos relativos a suelos y se consignaron solamente los coeficientes correspondientes a <u>peso propio</u>:

DC = peso propio de los componentes estructurales y agregados no estructurales

DW = peso propio de las superficies de rodamiento e instalaciones para servicios

Tabla 3.4.1-2 - Factores de carga para cargas permanentes, γ_p

Tipo de carga, tipo de fundación, y método utilizado para calcular la fricción	Factor d	le carga
negativa	Máximo	Mínimo
DC: Elementos y accesorios	1,25	0,90
DC: Resistencia IV solamente	1,50	0,90
DW: Superficies de rodamiento e instalaciones para servicios públicos	1,50	0,65

La existencia de valores máximos y mínimos para las cargas permanentes pueden llevar a duplicar en algunos casos la cantidad de casos a analizar. Un caso típico de esta duplicación se da en el análisis de elementos de hormigón estructural sometidos a flexión compuesta.

ACCIONES PERMANENTES (Deformaciones Impuestas)

Para las <u>deformaciones impuestas</u> debidas a cargas permanentes:

PS = fuerzas secundarias de postensado

CR = solicitaciones generadas por fluencia lenta

SH = solicitaciones generadas por contracción

Componente del puente	PS	CR, SH
Superestructura – Hecha por dovelas Hormigón de la subestructura resistiendo la superestructura hecha por dovelas (ver Artículos 3.12.4. y 3.12.5.)	1,0	Ver γ _p para DC, Tabla 3.4.1-2
Hormigón de la superestructura no hecha por dovelas	1,0	1,0
Subestructura resistiendo la superestructura no hecha por dovelas • Utilizando I _g • Utilizando I _{efectivo} Subestructura de acero	0,5 1,0	0,5 1,0

SOBRECARGAS

Combinación de cargas	DC DD DW EH EV	LL		ad	OF	0,				Usa	r sólo	uno po	or vez	
Estado límite	ES EL PS CR SH	IM CE BR PL LS	WA	ws	WL	FR	TU * €	TG	SE	EQM	BL	IC	СТ	cv
Resistencia I (a menos que se especifique lo contrario)	76	1,75	1,00		1-1	1,00	0,50/1,20	YTG	YSE	-	-	=	•	
Resistencia II	7p	1,35	1,00	-//	1-4	1,00	0,50/1,20	γTG	YSE	+	-	-	-	
Resistencia III	Yp	1-30	1,00	1,40	1	1,00	0,50/1,20	γTG	γsε	-	-	-	-	-
Resistencia IV	γ _p		1,00			1,00	0,50/1,20	-	-	227	7-0	-	-	-
Resistencia V	Yp	1,35	1,00	0,40	1,00	1,00	0,50/1,20	γTG	γsε	-	-	-	-	-

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

WA = carga hidráulica y presión del flujo de agua

WS = viento sobre la estructura

WL = viento sobre la sobrecarga

FR = carga de fricción

TU = solicitaciones generadas por

temperatura uniforme

Ver aparte

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una

embarcación

GRADIENTE TÉRMICO Y ASENTAMIENTOS (TG Y SE)

Las solicitaciones por **gradiente térmico y asentamientos** reciben un tratamiento diferente.

TG = solicitaciones generadas por gradiente de temperatura

SE = solicitaciones generadas por asentamiento

El factor de carga para gradiente de temperatura, γ_{76} , se deberá adoptar en base a las características específicas de cada proyecto. Si no hay información específica del proyecto que indique lo contrario, γ_{76} se puede tomar como:

- 0,00 en los estados límite de resistencia y evento extremo,
- 1,00 en el estado límite de servicio cuando no se considera la sobrecarga, y
- 0,50 en el estado límite de servicio cuando se considera la sobrecarga.

El factor de carga para asentamiento, γ_{sE} , se deberá adoptar en base a las características específicas de cada proyecto. Si no hay información específica del proyecto que indique lo contrario, γ_{sE} se puede *tomar* igual a **1,00**. Las combinaciones de carga que incluyan asentamiento también deben ser analizadas sin asentamiento.

RESUMEN DE COMBINACIONES

	DD DW EH	IM CE BR	WA	WS	WL	FR	TU CR SH	TG	SE	Usar	uno d Ve IC	e esto ez CT	s por
Estado Límite	EV ES EL	PL LS						n_{i}	VI.	3			
RESISTENCIA I	Yo	1,75	1,00		-	1,00	0,50/1,20	YTG	YSE	4	+		-
RESISTENCIA II	Yn	1,35	1,00	-		1,00	0,50/1,20	YTG	YSE	-		-0	12
RESISTENCIA III	Y_p	adsource.	1,00	1,40	-	1,00	0,50/1,20				-	-	-
RESISTENCIA IV Sólo <i>EH, EV, ES, DW, DC</i>	Y ₀ 1,5	-	1,00	4	- 1	1,00	0,50/1,20		-	-	-	a	9
RESISTENCIA V	Yp	1,35	1,00	0,40	1,0	1,00	0,50/1,20	YTG	YSE		٠	-	-
EVENTO EXTREMO I	Yp	YEQ	1,00	-	1-	1,00	-	-	-	1,00		-	=
EVENTO EXTREMO II	Yp	0,50	1,00	-	-	1,00			-	-	1,00	1,00	1,00
SERVICIO I	1,00	1,00	1,00	0,30	1,0	1,00		YTG	YSE	+	-	3	
SERVICIO II	1,00	1,30	1,00		=	1,00	1,00/1,20	4				-	*
SERVICIO III	1,00	0,80	1,00	No f	÷		1,00/1,20	YTG	Y _{SE}	+	+	-	•
SERVICIO IV	1.00	was and	1.00	0.70	-	1.00	1.00/1.20	-	1.00	-		-	-

RESUMEN DE COMBINACIONES

LISTADO EJEMPLO DE COMBINACION DE ACCIONES PARA UN PROYECTO

									1	1												4				
			PERMA	NENTE!	,		1	S	OBRE	CAR	GAS D	EUS	0						COA	CCION	1	0	A(CIDE	NTAL	ES
to the second second	DC	DD	DW	EH	EV	ES	EL	LL	IM	CE	BR	PL	LS	WA	WS	WL	FR	TU	CR	SH	TG	SE	EQ	IC	CT	CV
RESISTENCIA I	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	1,75	1,75	1,75	1,75	1,75	1,75	1,00	-	-	1,00	0,50/1,20	0,50/1,20	0,50/1,20	0.00	0.00	-	-	7	-
RESISTENCIA II	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	1,35	1,35	1,35	1,35	1,35	1,35	1,00	1	9	1,00	0,50/1,20	0,50/1,20	0,50/1,20	0.00	0.00	+	-	4	-
RESISTENCIA III	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	-	-	-	1	-	-	1,00	1,40	-	1,00	0,50/1,20	0,50/1,20	0,50/1,20	0.00	0.00	L	2	3	
RESISTENCIA IV	1.50	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00		-	C	-	-	9	1,00			1,00	0,50/1,20	0,50/1,20	0,50/1,20	0.00	0.00	9	-	-	31
RESISTENCIA V	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	1,35	1,35	1,35	1,35	1,35	1,35	1,00	0,40	1,0	1,00	0,50/1,20	0,50/1,20	0,50/1,20	0.00	0.00	-	4	1	
		The same			500	er a a co	Mah								7			315	and the							
EVENTO EXTREMO I	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	YED	YEQ	YEQ	YEQ	$\gamma_{\rm EQ}$	Y S	1,00	-	28	1,00		-	-	8	33	1,00	1	н	4
EVENTO EXTREMO II	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0,75/1,50	1.00	0,50	0,50	0,50	0,50	0,50	0,50	1,00	4	6.7	1,00	+	4	4:	I.S.	2	1	1,00	78	
EVENTO EXTREMO II	0.90/1.25	0.45/1.80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	0,50	0,50	0,50	0,50	0,50	0,50	1,00	0		1,00	-	7		-	127	-		1,00	
EVENTO EXTREMO II	0.90/1.25	0.45/1,80	0.65/1.50	0.90/1,50	nota	0.75/1.50	1.00	0,50	0,50	0,50	0,50	0,50	0,50	1,00	-	4	1,00	-	-	-	4	2	ė.			1,00
													No.													
SERVICIO I	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,30	1,0	1,00	1,00/1,20	1,00/1,20	1,00/1,20	0.50	0.50	1	-	3	3
SERVICIO II	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,30	1,30	1,30	1,30	1,30	1,30	1,00	9	u u	1,00	1,00/1,20	1,00/1,20	1,00/1,20		4	1	-	٧,	3
SERVICIO III	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,80	0,80	0,80	0,80	0,80	0,80	1,00		-	1,00	1,00/1,20	1,00/1,20	1,00/1,20	1.00	1.00	-	-	+	-
SERVICIO IV	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1			3	-	32	1.00	0.70	4	1.00	1.00/1.20	1.00/1.20	1.00/1.20	4	1.00	-	1		32
							1	1	2 3				H					7								H
FATIGA	-	-	1-			4	+0	0,75	0,75	0,75	7.		-50		+	-	-	-		-	.+	-		+	.7	3
		_	THE RESERVE TO				TAIL	1	-				_	_	-	_		_								

Puente Reconquista - Goya sobre el Rio Paraná (L = 380 m)

ESTADOS LIMITE DE SERVICIO

CIRSOC 801 establece 4 Estados Límite de Servicio:

SERVICIO I Combinación de cargas correspondiente a la **operación normal**

del puente con un viento de 25 m/s (90 km/h), tomando

todas las cargas con sus valores nominales.

SERVICIO II Combinación de cargas que busca controlar que en servicio y

debido a la sobrecarga útil vehicular, no se produzca la fluencia en

las estructuras de acero ni el deslizamiento en las uniones de

deslizamiento crítico. Se aplica sólo a las estructuras de acero.

SERVICIO III

Combinación de cargas para el análisis longitudinal relacionada

exclusivamente con la tracción en superestructuras de

hormigón pretensado, cuyo objetivo es controlar la fisuración y la

tracción principal en las almas de las vigas construidas por dovelas

de hormigón.

SERVICIO IV

Combinación de cargas relacionada exclusivamente con la tracción

en columnas de hormigón pretensado, cuyo objetivo es

controlar la fisuración.

ESTADOS LIMITE DE SERVICIO

En puentes <u>de hormigón estructural</u>, las combinaciones de servicio básicas son entonces:

SERVICIO 1

Combinación de cargas correspondiente a la operación normal del puente con un viento de 25 m/s (90 km/h), tomando todas las cargas con sus valores nominales

SERVICIO III

Combinación de cargas para el análisis longitudinal relacionada con la tracción en superestructuras de hormigón pretensado, cuyo objetivo es controlar la fisuración

PARA PUENTES DE VIGAS DE Ho PRETENSADO

Verificación de compresiones en vigas pretensadas bajo cargas de servicio

Verificación de tracciones en vigas pretensadas bajo cargas de servicio

ESTADOS LIMITE DE SERVICIO

CIRSOC 801 establece los siguientes factores de carga para cada uno de los 4 Estados Límite de Resistencia:

			_	AA						AM.				
Combinación de cargas	DC DD DW EH	ore	an						ōΠ	Ara	ar sólo	uno p	or vez	
Estado límite	EV ES EL PS CR SH	LL IM CE BR PL LS	ARG	ws	WL	FR	ASOCI tup	TG	SE	EQ (*)	BL	IC	СТ	cv
Servicio I	1,00	1,00	1,00	0,30	1,00	1,00	1,00/1,20	Ϋ́TG	YSE	-	92		-	-
Servicio II	1,00	1,30	1,00		-	1,00	1,00/1,20	-	-	-	-	-	-	-
Servicio III	1,00	0,80	1,00	13-13	- }	1,00	1,00/1,20	Ϋ́TG	γse	-	-	-	-	-
Servicio IV	1,00	-	1,00	0,70	-3	1,00	1,00/1,20	-	1,00		-	-	-	-

ESTADOS LIMITES DE SERVICIO

CIRSOC 801 estable que para puentes de hormigón estructural deberán realizarse, según corresponda y como mínimo, las siguientes verificaciones de ELS:

- ✓ FISURACIÓN (artículo 5.7.3.4)
- ✓ DEFORMACIONES (artículo 5.7.3.6)
- TENSIONES EN EL HORMIGÓN (artículo 5.9.4) Y EN EL ACERO DE PRETENSADO

EST. LÍMITE DE SERVICIO: FISURACION

EVENTO OF BERNIE ASOCIACIÓN ANGENTINA

ASOCIACIÓN ARGENTAL

ASOCIACIÓN ARGENTAL

A LA CARRETERAS

DE CARRE

EST. LÍMITE DE SERVICIO: FISURACION

- ACI y AASHTO no realizan una verificación explícita de fisuración
- Igual que en el CIRSOC 201-05 el control es indirecto a través de una separación máxima entre las armaduras adherentes
- En la expresión de cálculo para la separación máxima (s) intervienen
 - el recubrimiento efectivo a eje de barras (ds),
 - el tipo de exposición (γe) y
 - la tensión de trabajo de la armadura para sección fisurada y cargas de servicio (fss)

$$s \le \frac{122,6 \, \gamma_e}{\beta_s \, f_{ss}} > 2 \, d_c$$

$$\beta_s = 1 + \frac{d_c}{0,7 \, (h - d_c)}$$

 En el cálculo de la tensión puede considerarse la colaboración de la armadura de pretensado (siempre que sea adherente)

EVENTO OF BANIZADO POR.

ASOCIACIÓN ARGENTAL

ASOCIACIÓN ARGENTAL

AL CARRETE PASOCIACIÓN A

DE CARRE

Los criterios de limitación de deformaciones son «opcionales»

De aplicarlos, se deberá considerar <u>una porción</u> de la sobrecarga correspondiente a la condición de Servicio I (todos los carriles cargados y acción dinámica):

3.6.1.3.2. Carga para la Evaluación Opcional de la Flecha por Sobrecarga

Si el Propietario invoca el criterio optativo referente a la flecha por sobrecarga especificado en el Artículo 2.5.2.6.2, la flecha se deberá tomar como el mayor de los siguientes valores:

- La debida al 63 por ciento del camión de diseño solamente, o
- La debida al 16 por ciento del camión de diseño considerado juntamente con el 63 por ciento de la carga de carril de diseño.

No es necesario analizar la repartición transversal, es decir que en un puente de vigas puede suponerse que todas las vigas principales tienen la misma deformación y solicitaciones

Si se decide verificar la admisibilidad de las deformaciones, habrá que considerar rigideces que tengan en cuenta el grado de fisuración. Al igual que en ACI y en el CIRSOC 201-05 se emplea la fórmula de Branson:

Igual que en ACI y en el CIRSOC 201-05 se emplea la formula de Bratis
$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g$$
(5.7.3.6.2-1)
Siendo:
$$M_{cr} = 1000 \ f_r \frac{I_g}{y_i}$$

$$M_{cr} = 1000 \ f_r \frac{V_g}{V_t}$$
 (5.7.3.6.2-2)

Donde:

M_{cr} = momento de fisuración [kN·m]

= módulo de rotura del hormigón como se especifica en el Artículo 5.4.2.6 [MPa]

= distancia entre el eje neutro y la fibra extrema traccionada [m]

= máximo momento en un elemento en la etapa para la cual se calcula la deformación [kN·m]

Si se decide verificar la admisibilidad de las deformaciones, solo a nivel de sugerencia se indican relaciones admisibles :

A falta de otros criterios, para los puentes vehiculares de acero y/u hormigón se pueden adoptar para las flechas los siguientes límites:

Carga vehicular, general

Luz/800,

Cargas vehiculares y peatonales

Luz/1000

Carga vehicular sobre voladizos

Luz/300, y

Cargas vehiculares y peatonales sobre voladizos

Luz/375.

ESTADOS LÍMITE DE SERVICIO: TENSIONES ADM. EN EL H° Y EL A° TESO

ESTADOS LÍMITE DE SERVICIO: TENSIONES ADMISIBLES EN EL H°

TRACCIÓN Y COMPRESIÓN EN EL Hº ANTES DE PÉRDIDAS

Tabla 5.9.4.1.2-1 – Límites para la tensión de tracción temporaria en el hormigón antes de las pérdidas – Elementos totalmente pretensados

Tipo de puente	Ubicación	Tensión límite
Todos los	 En la zona de tracción precomprimida sin armadura adherente En áreas fuera de la zona de tracción precomprimida y sin armadura auxiliar adherente 	N/A 0,25 $\sqrt{f'_{ci}} \le 1,38$ [MPa]
puentes, excepto los puentes construidos por dovelas	 En áreas con armadura adherente (barras de armadura o acero de pretensado) suficiente para resistir la fuerza de tracción en el hormigón calculada suponiendo una sección no fisurada, cuando la armadura se dimensiona utilizando una tensión de 0,5·f_y, no mayor que 207 MPa 	0,63 $\sqrt{f'_{ci}}$ [MPa]
	 Para tensiones de manipulación en pilotes pretensados 	$0,415 \sqrt{f_{ci}^{*}}$ [MPa]

Todas las tensiones de compresión se limitan a 0,60 f'ci (5.9.4.1.1)

ESTADOS LÍMITE DE SERVICIO: TENSIONES ADMISIBLES EN EL H°

TRACCIÓN EN EL Hº DESPUÉS DE LAS PÉRDIDAS

Tabla 5.9.4.2.2-1 – Límites para la tensión de tracción en el hormigón pretensado en estado límite de servicio después de las pérdidas – Elementos totalmente pretensados

Tipo de puente	Ubicación	Tensión límite
LIEUT	Tracción en la zona de tracción precomprimida, suponiendo s	ecciones no fisuradas
Todos los puentes, excepto	Para elementos con cables de pretensado o armadura adherente sujetos a condiciones de corrosión leves o moderadas	$0,50 \sqrt{f'_c}$ [MPa]
los puentes construidos por dovelas	Para elementos con cables de pretensado o armadura adherente sujetos a condiciones de corrosión severas	$0,25 \sqrt{f'_{c}}$ [MPa]
	Para elementos con cables de pretensado no adherentes	Tracción nula

ESTADOS LÍMITE DE SERVICIO: TENSIONES ADMISIBLES EN EL H°

COMPRESIÓN EN EL HO DESPUÉS DE PÉRDIDAS

Tabla 5.9.4.2.1-1 – Límites para la tensión de compresión en el hormigón pretensado en estado límite de servicio después de las pérdidas – Elementos totalmente pretensados

Übicación	Tensión Límite
Excepto en puentes construidos por dovelas, tensión debida a la sumatoria de la tensión efectiva de pretensado y las cargas permanentes	0,45 f c [MPa]
En puentes construidos por dovelas, tensión debida a la sumatoria de la tensión efectiva de pretensado y las cargas permanentes	0,45 f'c [MPa]
Tensión debida a la sumatoria de las tensiones efectivas de pretensado, las cargas permanentes y las cargas transitorias, como así también durante las operaciones de transporte y manipulación	0,60 ø _w f' _c [MPa]

El coeficiente of solamente se emplea en secciones huecas con almas muy esbeltas

EST. LÍMITE DE SERVICIO: TENSIONES ADMISIBLES EN EL A° TESO

TRACCIÓN EN EL ACERO DE PRETENSADO

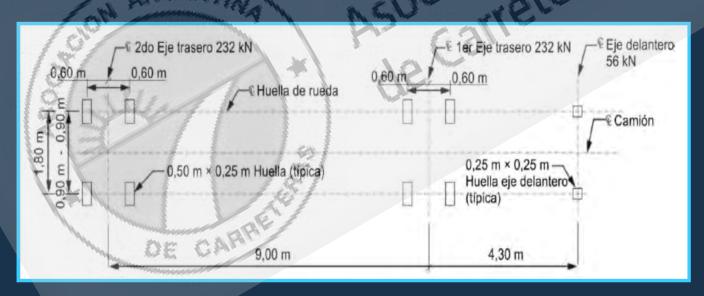
Tabla 5.9.3-1 – Límites de tensión para los cables de pretensado

Tip	o de Cable	
Cordones aliviados de tensiones y barras lisas de alta resistencia	Cordones de baja relajación	Barras de alta resistencia conformadas
	1193	
0,70 f _{pu}	0,75 f _{pu}	-
0,80 f _{py}	0,80 f _{py}	0,80 f _{py}
2		
0,90 f _{py}	0,90 f _{py}	0,90 f _{py}
0,70 f _{pu}	0,70 f _{pu}	0,70 f _{pu}
0,70 f _{pu}	0,74 f _{pu}	0,70 f _{pu}
0,80 f _{py}	0,80 f _{py}	0,80 f _{py}
	Cordones aliviados de tensiones y barras lisas de alta resistencia 0,70 f _{pu} 0,80 f _{py} 0,70 f _{pu} 0,70 f _{pu}	de tensiones y barras lisas de alta resistencia 0,70 f _{pu} 0,75 f _{pu} 0,80 f _{py} 0,90 f _{py} 0,70 f _{pu}

CIRSOC 801 establece 2 Estados Límite de Fatiga:

FATIGA I

Combinación de cargas de fatiga y fractura que se relacionan con la resistencia a la fatiga frente a una carga inducida infinita en el tiempo


FATIGA II

Combinación de cargas de fatiga y fractura que se relacionan con la resistencia a la fatiga frente a una carga inducida finita en el tiempo (no aplica a hormigón armado y pretensado)

Combinación de cargas		AN A	AGE		1		ASOL	(3)	re	Usa	r sólo	uno po	or vez	
Estado límite	ES EL PS CR SH	IM CE BR PL LS	WA	ws	WL	FR	TU	TG	SE	EQ (*)	BL	IC	СТ	cv
Fatiga I – sólo LL, IM y CE	1	1,50			HE	-		-		-		-	-	-
Fatiga II – sólo <i>LL, IM</i> y <i>CE</i>		0,75	OE.	Call	-		-	-			-		-	31

- Sólo FATIGA I es exigido para hormigón armado y pretensado
- ➤ El coeficiente 1,50 debe aplicarse a una sobrecarga de tránsito especial para fatiga:
 - el camión es GEOMÉTRICAMENTE DIFERENTE al empleado en los otros estados límite:
 - distancia entre ejes traseros constante e igual a 9 metros
 - cada eje trasero se considera doble y con una distancia de 1,20 metros entre ejes de ruedas

- Se carga con un solo camión en la posición que produzca mayores variaciones de tensión
- Si bien se analiza una sola faja cargada, no debe aplicarse el coeficiente 1,20 de presencia múltiple (se toma un coeficiente igual a uno)
- El incremento por carga dinámica IM que se exige para fatiga es menor que el que corresponde a otros estados límite:

Componente	IM
Juntas del tablero – Todos los Estados Límite	75%
Todos los demás componentes Estado Límite de Fatiga y Fractura Todos los demás Estados Límite	15%

DE CARP

- No es necesario verificar la fatiga para losas de tablero de hormigón multiviga, ni en alcantarillas cajón de hormigón armado
- ➤ En las regiones de los elementos de hormigón pretensado que bajo la acción de las cargas permanentes y la tensión de pretensado están comprimidas, solo se deberá considerar la fatiga si la tensión de compresión es menor que la máxima tensión de tracción resultante de la combinación de cargas correspondiente a Fatiga I
- No es necesario verificar la fatiga de las armaduras de los elementos pretensados diseñados de manera que en Estado Límite de Servicio III la tensión en la fibra extrema traccionada esté dentro del límite especificado para elementos «totalmente pretensados»

DE CARP

CIRSOC 801 verifica ELF en los puentes de Ho limitando las tensiones en los aceros:

Acero Pasivo

El umbral de fatiga de amplitud constante, $(\Delta F)_{TH}$, para las armaduras rectas y armaduras de alambre soldado sin soldaduras transversales en la región de tensión elevada se deberá tomar como:

$$\Delta F_{TH} = 165,47 - 0,048 f_{min}$$

(5.5.3.2-1)

f_{min} = mínima tensión por sobrecarga resultante de la combinación de cargas correspondiente a Fatiga I, combinada con la tensión más severa debida ya sea a las cargas permanentes o a las cargas permanentes más las cargas externas inducidas por contracción y fluencia lenta; la tracción se considera positiva, la compresión negativa [MPa]

Acero Teso

El umbral de fatiga de amplitud constante, $(\Delta F)_{TH}$, de los cables de pretensado se deberá tomar como:

- 124 MPa para radios de curvatura mayores que 9 m, y
- 69 MPa para radios de curvatura menores o iguales que 3,7 m.

Para radios comprendidos entre 3,7 y 9 m estará permitido interpolar linealmente.

CONCLUSIONES SOBRE ACCIONES EN CIRSOC 801 y LRFD EN PUENTES

Con la puesta en vigencia de la serie CIRSOC 800 ...

- ✓ dispondremos de directivas exhaustivas y detalladas para la estimación de valores de casi todas los tipos de acciones esperables en un puente
- dispondremos de combinaciones que toman en cuenta, para los distintos tipos de acciones sobre los puentes
 - el grado de conocimiento que podemos alcanzar a priori sobre su valor
 - · la dispersión intrínseca de esos valores, de acuerdo a su naturaleza
- mediante los factores de combinación también estaremos teniendo en cuenta criterios de probabilidad de actuación simultánea de las acciones
- consideraremos en las verificaciones y el dimensionamiento efectos resultantes de las combinaciones que son razonablemente equiprobables
- ✓ podremos aplicar combinaciones que son (casi) independientes de los materiales estructurales

CONCLUSIONES SOBRE ACCIONES EN CIRSOC 801 y LRFD EN PUENTES

Con la puesta en vigencia de la serie CIRSOC 800 ...

- ✓ al contrario de lo que sucede en CIRSOC para edificios, se dispondrá también de combinaciones para estados límites de servicio, razonablemente probables en sí, y relativamente equi-probables entre sí
- ✓ dada la estructura LRFD del nuevo reglamento, proveeremos a nuestros diseños de niveles de prestación en servicio y de márgenes de seguridad que resultarán sensiblemente uniformes, aún para proyectos de puentes muy diferentes

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

Introducción

El Cap. 4, se refiere a:

- Métodos de Análisis Sugeridos o Aceptados
- Modelación de las Estructuras
- Determinación de Solicitaciones

Se pueden usar OTROS METODOS, siempre que sean confiables y satisfagan EQUILIBRIO Y COMPATIBILIDAD

Análisis ELÁSTICO:

En General

Análisis INELÁSTICO:

- Redistribución en vigas continuas
- Pandeo inelástico
- Aternativa para Estados Extremos

4.4 - Métodos Aceptados

Clásicos de las Fuerzas y/o Desplazamientos

ciación Argentina

- Diferencias Finitas
- Elementos Finitos
- Placas Plegadas
- Bandas Finitas
- Analogía del Emparrillado
- Uso de Series Armónicas

DE CAR

- Cálculo Plástico
- Líneas y Superficies de Influencia

4.5 - Sobre los Modelos Matemáticos

DE CAR

- Barreras y barandas: se consideran por su rigidez en algunos casos límites de servicio
- Interacción Suelo-Estructura: considerarlo, preferentamente, en los modelos matemáticos

COMPORTAMIENTO ELÁSTICO-LINEAL: Es admitido en general, hasta el límite elástico

COMPORTAMIENTO INELÁSTICO:

- Asegurar la Ductilidad por Confinamiento (P.E.)
- Considerar la Sobrerresistencia
- Asegurar que Modos de Falla como Pandeo o Corte no preceden a las de flexión
- Modificación de la Geometría de la Estructura
- Considerar Diagrama LINEAL de Deformaciones (E, Y)
- Incluir Deformacion por Corte en elementos de Gran Altura
- Atención con Pandeo Inelástico

Teorías de la Deformación

Teoría Lineal (de las pequeñas deformaciones)

Válida si no cambian los esfuerzos por la deformación

P P f pequeña M=P*L

Teoría no Lineal (de las grandes deformaciones)

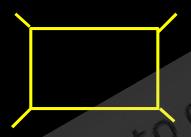
- f grande

 M=P*(L-v)
- No linealidad Geomértica
- Las deformaciones influyen en las solicitaciones
- No es aplicable el Principio de Superposición
- Considerar Efectos Reológicos

Se permiten

- Métodos aproximados de análisis
- Métodos de análisis refinados

- 4.6.1 Influencia de la geometría en Planta
- 4.6.2 Métodos aproximados de análisis
- 4.6.3 Métodos de análisis refinados
- 4.6.4 Redistribución de momentos negativos en puentes de vigas continuas
- 4.6.5 Estabilidad
- 4.6.6 Análisis para gradiente de temperatura


DE CAR

4.6.1 Influencia de la geometría en Planta

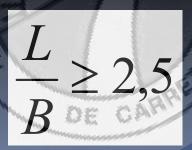
Consideraciones sobre la geometría global de los puentes

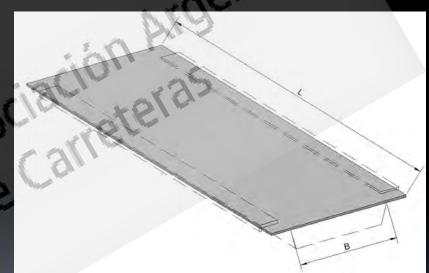
Puentes Anchos

- Puentes según Relación Longitud (L) / Ancho (B):
- Consideración o no como viga de sección transversal rígida

Puentes Oblicuos

Puentes Curvos:


Se dan limitaciones para calcular como recta Puentes de vigas curvos como de tramos rectos facetados o con vigas curvas

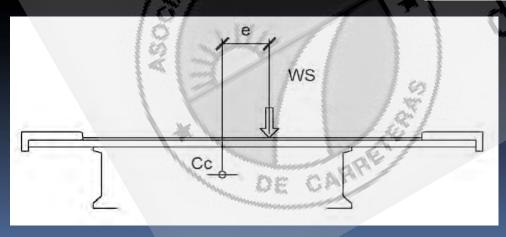


- 4.6.1 Influencia de la geometría en Planta
 - 4.6.1.1 Relación de aspecto en planta

Longitud, Ancho y Oblicuidad

- 4.6.1 Influencia de la geometría en Planta
 - 4.6.1.1 Relación de aspecto en planta

Longitud, Ancho y Oblicuidad



4.6.1 Influencia de la geometría en Planta

4.6.1.1 Relación de aspecto en planta

Longitud, Ancho y Oblicuidad

4.6.1 Influencia de la geometría en Planta

4.6.1.2 Estructuras de Planta Curva

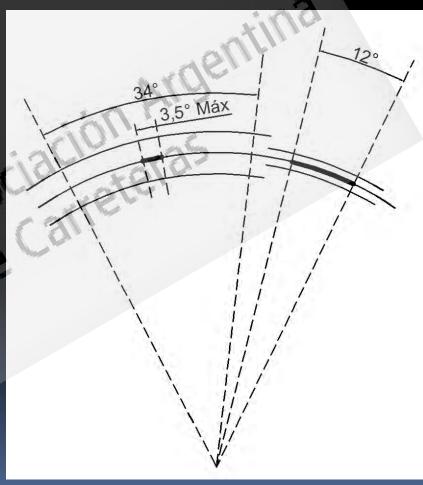
Requisitos Generales

- Las solicitaciones dimensionantes de la superestructura se deben basar en un análisis racional integral.
- Considerar las ubicaciones relativas del centro de gravedad y el centro de corte en el análisis de secciones transversales sin ejes de simetría
- Considerar simultáneamente la infraestructura en el caso de estribos, pilas, o cabezales integrales.
- Los apoyos se considerarán como una unidad integral junto con la superestructura, considerando las condiciones de borde (articulaciones y/o conexiones integrales utilizados en el diseño).

- 4.6.1 Influencia de la geometría en Planta
 - 4.6.1.2 Estructuras de Planta Curva

Requisitos Generales

- Se deberá considerar la orientación de los apoyos y la restricción proporcionada por la infraestructura a los mismos. Estos efectos de carga deberán ser considerados en el diseño de los apoyos, pórticos transversales, diafragmas, riostras y del tablero.
- Los análisis podrán ser de primer orden, a menos que se considere necesario métodos más rigurosos.
- Puede despreciarse la distorsión de la sección transversal.
- Considerar los efectos de la fuerza centrifuga.


DE CARP

4.6.1 Influencia de la geometría en Planta

4.6.1.2 Estructuras de Planta Curva

4.6.2 Métodos aproximados de análisis

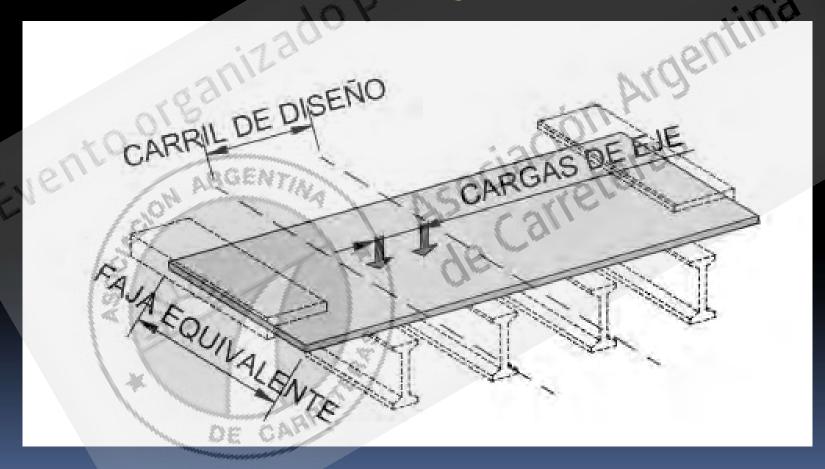
4.6.2.1 Tableros

Requisitos generales

Aplicabilidad

El tablero se subdivide en fajas perpendiculares a los componentes de apoyo

Los máximos valores de momentos en cualquier tramo o apoyo de tablero entre vigas se considerarán actuando en todas las regiones del mismo signo


Se permite utilizar este análisis en tableros con elementos prefabricados

Para puentes losa y losas de hormigón, de más de 4,50 m de longitud extendidos en dirección paralela al tránsito, se deberán aplicar los requisitos del Artículo 4.6.2.3 (Puentes tipo Losa)

4.6.2.1 Tableros

Ancho de fajas equivalentes Fajas interiores Fajas de borde

4.6.2.1 Tableros

Ancho de fajas equivalentes interiores

Tabla 4.6.2.1.3-1 - Fajas equivalentes
--

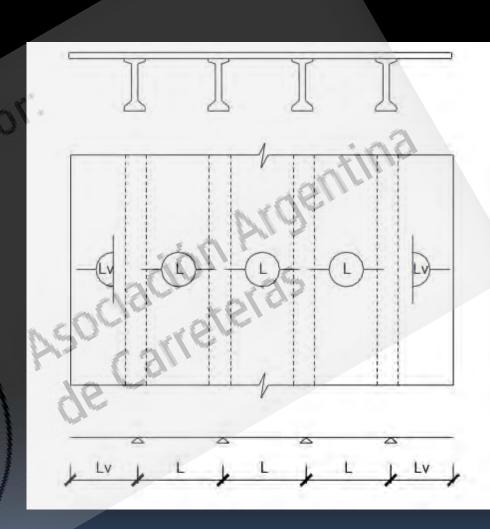
Tipo de tablero	Dirección de la faja primaria en relación con la del tránsito	Ancho de la faja primaria [m]
Harmigón:		
Hormigonado in situ	Voladizo	1.14 + 0.833·X
7500	Paralela o perpendicular	+M: 0.66 + 0.55 S -M: 1,22 + 0.25 S
 Hormigonado in situ con encofrados perdidos 	s Paralela o perpendicular	+M; 0.88 + 0.55 S
10 kg	190	M: 1,22 + D,25-S
Prefabricado, postesado	Paralela o perpendicular	+M: 0.66 + 0.55-S
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-M: 1,22 + 0,25-S

Siendo:

S: separación entre apoyos (m)

X: distancia entre la carga y el apoyo. (m)

Para obtener la carga por unidad de ancho de la faja equivalente, se divide la carga total de un carril de diseño por el ancho de faja calculado.

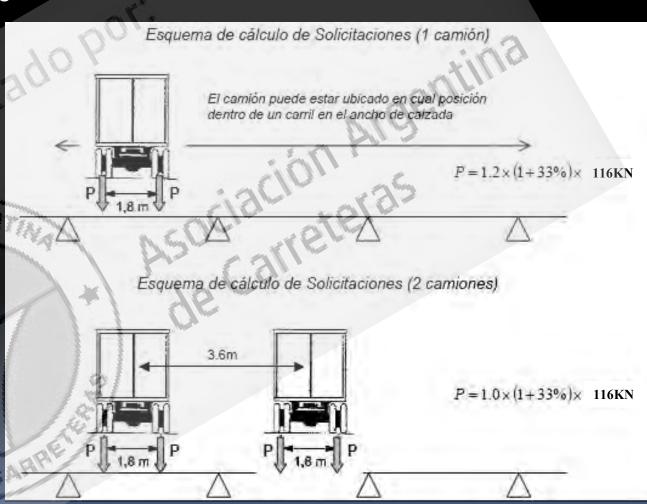

4.6.2.1 Tableros

Solicitaciones

DE CARE

Las fajas se consideran como un cordón continuo de vigas.

Los apoyos se consideran infinitamente rígidos y la distancia entre ellos es la distancia entre ejes de vigas.



4.6.2.1 Tableros

Solicitaciones

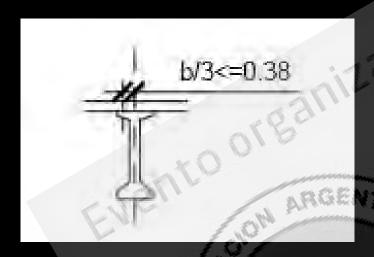
Ubicando el o los camiones en las posiciones más desfavorables se obtienen los máximos momentos positivos y negativos, los cuales deberán ser divididos por el ancho de repartición que les correspondiese (faja equivalente).

4.6.2.1 Tableros

Solicitaciones

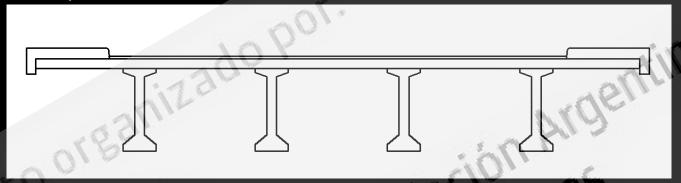
Ubicando el o los camiones en las posiciones más desfavorables se obtienen los máximos momentos positivos y negativos, los cuales deberán ser divididos por el ancho de repartición que les correspondiese (faja equivalente).

DE CARP



4.6.2.1 Tableros

Solicitaciones


Se puede refinar el cálculo, tomando las cargas de ruedas como distribuidas en la dirección portante según el ancho de rueda más la altura del tablero.

La sección de dimensionamiento para momentos negativos y solicitaciones de corte se ubica a un tercio del ancho del ala desde el eje del apoyo, sin exceder de 0.38 m.

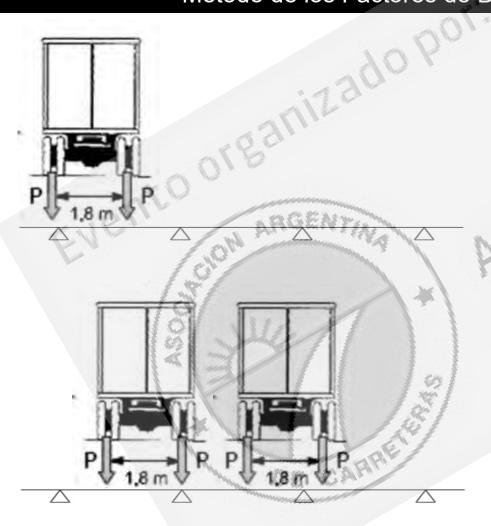
Los máximos valores de momento positivo o negativo calculados se considerarán actuando en todos los tramos o apoyos según corresponda.

- 4.6.2.2 Puentes Viga Losa. Repartición transversal de cargas
 - Aplicación

Puentes viga rectos y curvados horizontalmente (curvaturas pequeñas), que cumplan lo dispuesto en 4.6.1.2.4.

Secciones transversales con cuatro o más vigas paralelas y voladizos ≤ 1.80 m

Un único carril de carga, o múltiples carriles de sobrecarga que producen aproximadamente la misma solicitación por carril.


Vigas de sección constante, con separaciones máximas según los distintos casos.

Solamente para las tipologías transversales listadas

4.6.2.2 Puentes Viga – Losa. Repartición transversal de cargas

Método de los Factores de Distribución para Momento y Corte

Con las expresiones dadas por el Reglamento se determina un factor "g", que es la fracción del momento o del corte producido por un carril cargado (camión más carga de carril), según se trate de una viga interna o lateral.

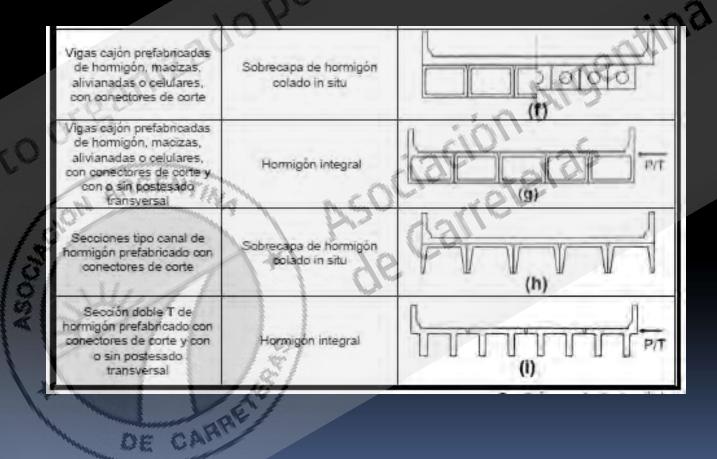
No obstante, el Reglamento exige que las vigas externas o laterales no deben resistir menos que las interiores.

Las expresiones utilizan como variables las rigideces y separación de vigas, espesor de tablero, etc. y son válidas para cargas de servicio y últimas y para verificar puentes existentes.

4.6.2.2 Puentes Viga – Losa. Repartición transversal de cargas

Método de los Factores de Distribución para Momento y Corte

El coeficiente "g" no solamente tiene en cuenta la posición más desfavorable posible de la sobrecarga sino también el efecto "espacial" producido por la no coincidencia en elevación de los centros de gravedad de la losa, la viga y los apoyos.


4.6.2.2 Puentes Viga – Losa. Repartición transversal de cargas

Tipologías transversales

Elementos de apoyo	Tipo de tablero	Sección transversal típica
Viĝa de acero	Losa de hormigón colada in situ, losa de hormigón prefabricada, empamillado de acero	I I I I
Vigas cajón cerradas de acera u homilgón prefablicado	Losa de hormigón colada in situ	(b)
Vigas cajón abiertas de acero u hormigón prefabricado	Losa de hormigón colada in situ, losa de tablero de hormigón prefabricado	(c)
Vigas cajón multicelulares hormigonadas in situ	Ho mr ig o n monolítico	(d)
Viga T de homilgón colado in situ	Hermigón monolítico	(e)

- 4.6.2.2 Puentes Viga Losa. Repartición transversal de cargas
 - Tipologías transversales

4.6.2.2 Puentes Viga – Losa. Repartición transversal de cargas

Tipologías transversales

Tabla 4.6.2.2.1-1 (Cont.) – Superestructuras habituales, cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3

Elementos de apoyo	Tipo de tablero	Sección transversal típica
Sección T de hormigón prefabricado con conectores de corte y con o sin postesado transversal	Hormigön integral	Pri (I)
Secciones 1. o bulb-T de hormigón prefabricado	Hormigon colado in situ, hormigón prefabricado	

4.6.2.2 Puentes Viga – Losa. Repartición transversal de cargas

 Método de los factores de Distribución para Momento en Vigas Interiores

Tabla 4.6.2.2.2.1-1 – Distribución de las sobrecargas por carril para el cálculo del momento flector en vigas interiores

Tipo de superestructura	Sección transversal aplicable de la Tabla 4.6.2.2.1-1	Factores de distribución	Rango de aplicabilidad
Tablero de hormigón, emparrillado con vanos llenos, parcialmente llenos, o emparrillado con vanos no llenos compuesto con losa de hormigón armado sobre vigas de acero u hormigón; vigas T de hormigón, secciones T y doble T de hormigón prefabricado	a, e, k y también i, j si están suficientemente conectadas para actuar como una unidad	Un carril de diseño cargado: $0.06 + \left(\frac{S}{4.5 \ m}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_a}{L \ t_s^{-3}}\right)^{0.4}$ Dos o más carriles de diseño cargados: $0.075 + \left(\frac{S}{2.9 \ m}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{L \ t_s^{-3}}\right)^{0.1}$ Utilizar el menor valor obtenido ya sea por la ecuación anterior, con $N_b = 3, o \ por \ la regla de la palanca$	1,10 ≤ S ≤ 4,90 0,11 ≤ t _c ≤ 0,30 8,00 ≤ L ≤ 73,00 N _b ≥ 4 4×10 ⁻³ ≤ K _g ≤ 3,0 N _b = 3

Estas expresiones ya tienen en cuenta el coeficiente de presencia múltiple

- 4.6.2.2 Puentes Viga Losa. Repartición transversal de cargas
 - Método de los factores de Distribución para Momento en Vigas Interiores

En las expresiones anteriores:

Nb = número de vigas longitudinales

S = separación entre ejes de vigas en metros

L = luz entre ejes de apoyos de las vigas principales

ts = espesor de la losa en metros

Kg = parámetro de rigidez longitudinal = n (1 + A eg²)

n = EB / ED

EB = módulo de elasticidad del material de la viga

ED = módulo de elasticidad del material del tablero

A = área de la viga en m2 (viga sola, no compuesta)

I = momento de inercia de la viga en m4 (viga sola, no compuesta)

eg = distancia entre los centros de gravedad de la viga y de la losa de tablero

- 4.6.2.2 Puentes Viga Losa. Repartición transversal de cargas
 - Método de los factores de Distribución para Momento en Vigas Exteriores o Laterales

"Regla de la Palanca"

La regla de la palanca implica sumar los momentos respecto de un apoyo para hallar la reacción en otro apoyo suponiendo que el elemento soportado está articulado en

los apoyos interiores.

En el caso de las vigas exteriores, se considera una articulación sobre la primer viga interior. Se disponen las cargas lo más próximo posible a la defensa, se toman momentos respecto a la articulación y se calcula la reacción equilibrante sobre la viga externa. El cociente entre esta reacción y las cargas actuantes da el coeficiente "g" para vigas exteriores.

- 4.6.2.2 Puentes Viga Losa. Repartición transversal de cargas
 - Método de los factores de Distribución para Momento en Vigas Exteriores o Laterales

Tabla 4.6.2.2.2.3-1 – Distribución de las sobrecargas por carril para el cálculo del momento flector en vigas longitudinales exteriores

Tipo de superestructura	Sección transversal aplicable de la Tabla 4,6.2.2.1-1	Un carril de diseño cargado	Dos o más carriles de diseño cargados	Rango de aplicabilidad
Tablero de hormigón, emparrillado con vanos llenos, parcialmente llenos, o emparrillado con	a, e, k y también	1 450	9 + e 9 ini erior e - 0.77 + de 2.89	-0,30 ≤ d _e ≤ 1,70
varios no llenos compuesto con losa de hormigón armado sobre vigas de acero u hormigón: vigas T de hormigón, secciones T y doble T de hormigón prefabricado	si están suficientemente conectadas para actuar como una unidad	Regia de la palança	Otilizar el valor obtenido de la ecuación anterior con N _b = 3 o la regla de la palanca, cualquiera sea el que resulte menor	N ₀ = 3

La distancia "de", se deberá tomar como positiva si el alma de la viga exterior está dentro de la cara interior de la baranda de tránsito y negativa si está por fuera del cordón o barrera de tránsito.

- 4.6.2.2 Puentes Viga Losa. Repartición transversal de cargas
 - Método de los factores de Distribución para Corte en Vigas Interiores y Exteriores

En forma análoga se utilizan tablas específicas para la distribución de sobrecargas para el análisis de las solicitaciones de corte.

DE CARP

4.6.2.3 Anchos de Faja Equivalentes para Puentes Tipo Losa

Tabla 4.6.2.3-1 – Esquema típico de la sección transversal

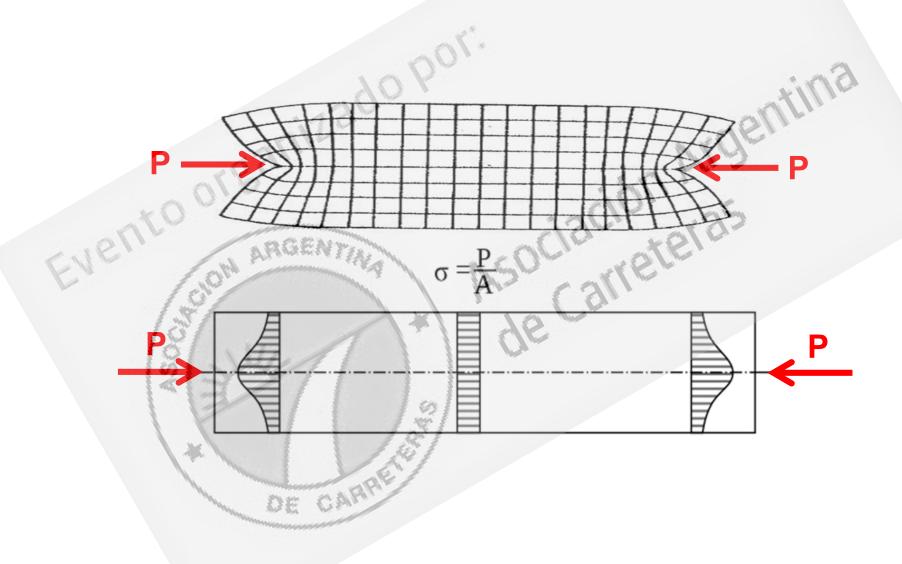
Elementos portantes	Tipo de tablero	Sección transversal tipica
Losa de hormigón, hormigonada in situ, o losa alivianada	Monolitico	1 (a) (a) (a) (a) (b) (a) (a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a

El ancho equivalente de las fajas longitudinales por carril, tanto para corte como para momento, con un carril cargado, es decir dos líneas de ruedas, se puede determinar como:

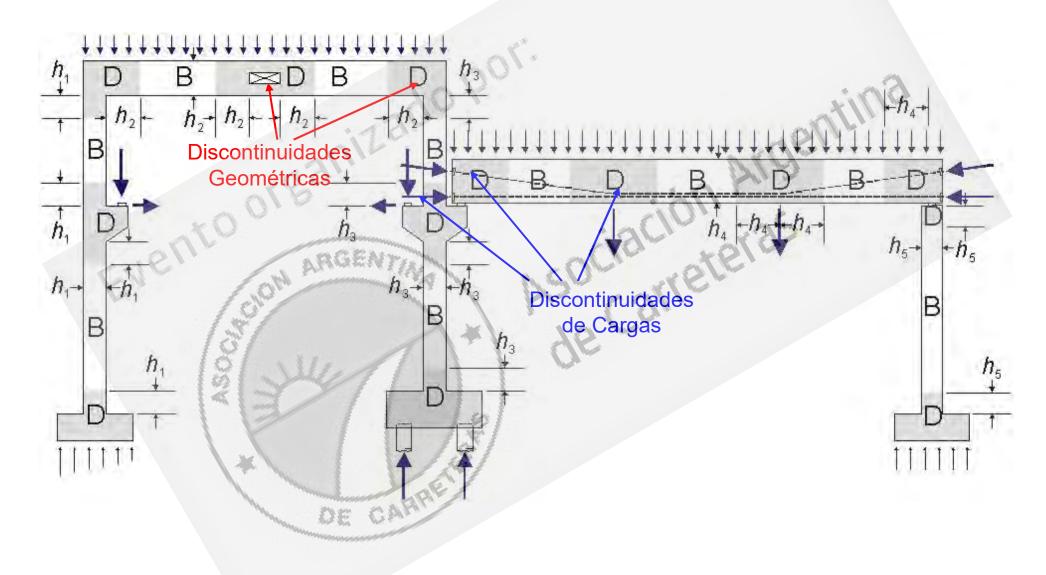
$$E = 0.25 + 0.42 \sqrt{L_s W_s}$$
 (4.6.2.3-1)

El ancho equivalente de las fajas longitudinales por carril, tanto para corte como para momento, con más de un carril cargado, se puede determinar como:

$$E = 2.13 + 0.12 \sqrt{L_1 W_1} \le \frac{W}{W}$$
 (4.6.2.3-2)



Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800



REGIONES EN LAS QUE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI

REGIONES EN LAS QUE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI

RESOLUCIÓN DE REGIONES "D"

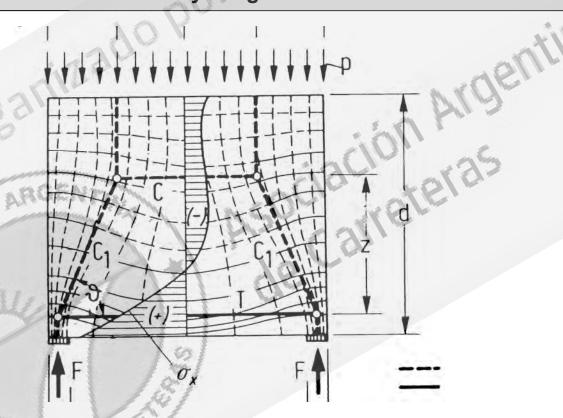
SOLUCIONES BASADAS EN LA TEORÍA DE LA ELASTICIDAD LINEAL

- Métodos Analíticos (cubren unos pocos casos)
- Métodos Numéricos

Las soluciones elásticas lineales no representan adecuadamente el fenómeno (p.e. fisuración del hormigón)

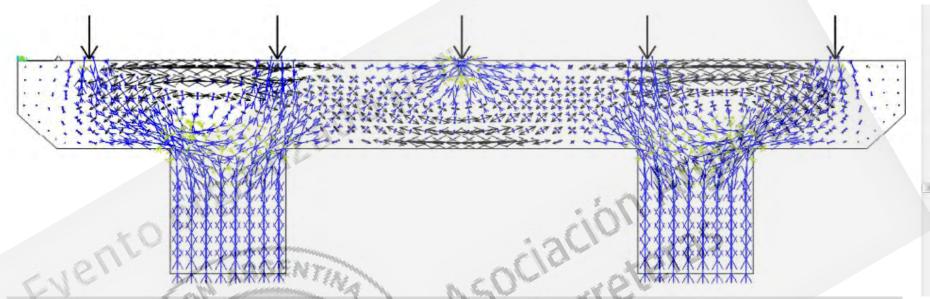
Métodos Numéricos basados en teorías no lineales Existe software disponible. Por el momento lento de implementar.

Métodos Empírico-Analíticos: Limitados a ciertas condiciones de apoyo y carga. Muy rápidos de implementar. Peligrosa su extrapolación

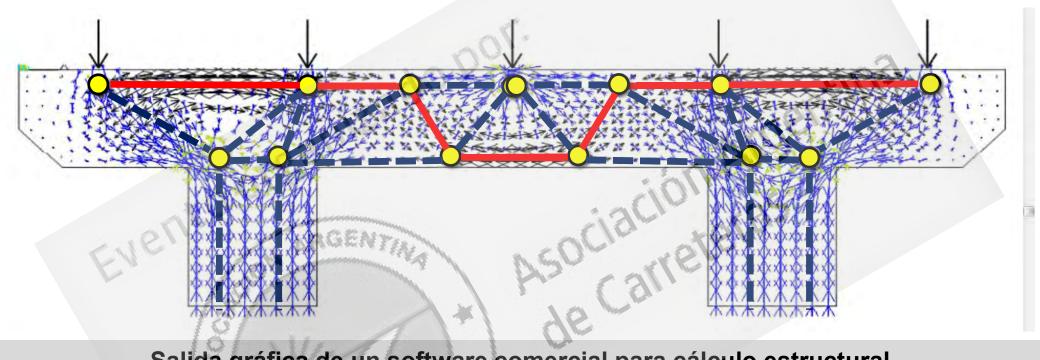

Modelos Puntal-Tensor (Strut and Tie Models): Método potente, lento de emplear en cálculos manuales. Comienza a haber software disponible.

MODELO PUNTAL – TENSOR - CONCEPTO

Nodo: Punto de intersección de ejes de puntales y tensores. Se ubican en


cambios bruscos de dirección y/o signos de isostáticas.

Zona Nodal: Volumen de hormigón que rodea a un nodo. Es la responsable de transferir los esfuerzos de los elementos que concurren al nodo


CRITERIOS PARA FORMULAR LA GEOMETRÍA DEL MPT

- Utilidad de la red de isostáticas o de una salida gráfica de un programa de elementos finitos con orientación de tensiones principales
- Estructuras muy solicitadas: mantener cierto apego a la red de isostáticas de modo de no requerir demasiada fisuración y plastificación para que el modelo funcione según lo previsto.
- Estructuras poco solicitadas: mayor libertad en la elección del modelo. Puede optimizarse el consumo de acero haciendo que la sumatoria del producto de la fuerza en los tensores por su longitud sea mínimo.
- Puede recurrirse a programas específicos que ya se encuentran disponibles.

DIRECCIONES PRINCIPALES

Salida gráfica de un software comercial para cálculo estructural

OE CARR

VERIFICACIONES DE RESISTENCIA

$$F_{u} \leq \phi F_{n}$$

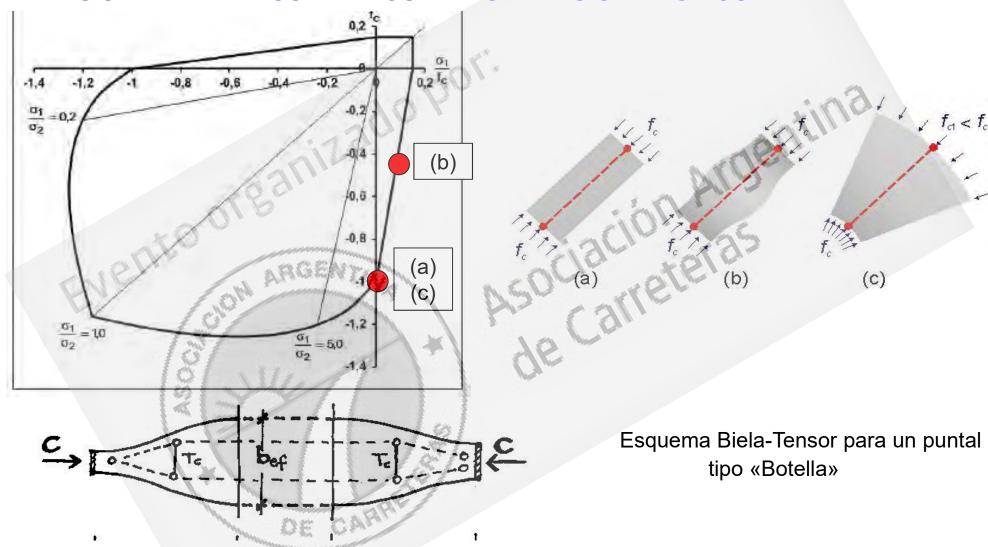
 F_{ns} : Resistencia de un Puntal ($\phi = 0.70$)

 F_{nt} : Resistencia de un Tensor (ϕ = 0.90)

 F_{nn} : Resistencia de una Zona Nodal (ϕ = 0.70)

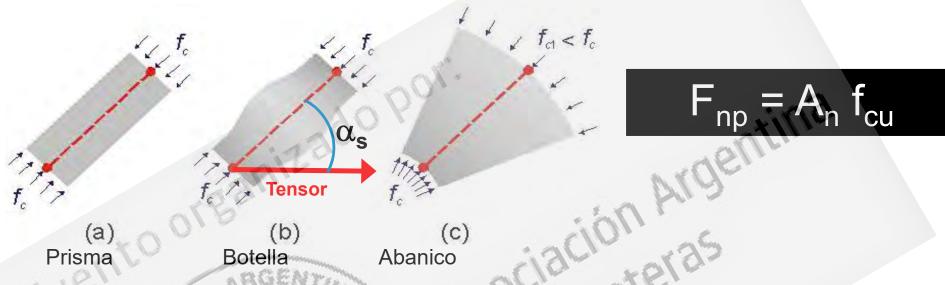
DE CARR

RESISTENCIA DE LOS TENSORES


$$F_{nt} = A_{st} f_y + A_{ps} (f_{pe} + f_y)$$

• f_{pe}: Tensiones en el acero activo debido al tesado, después de pérdidas.

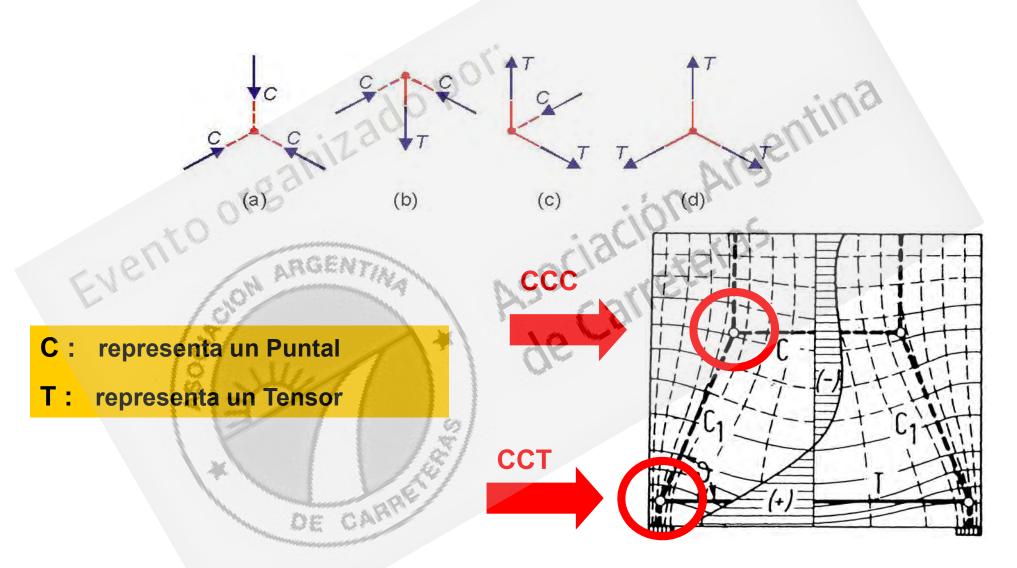
CARRI



RESISTENCIA DE LOS CAMPOS DE COMPRESIÓN BÁSICOS

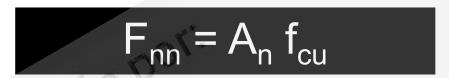
RESISTENCIA DE LOS PUNTALES

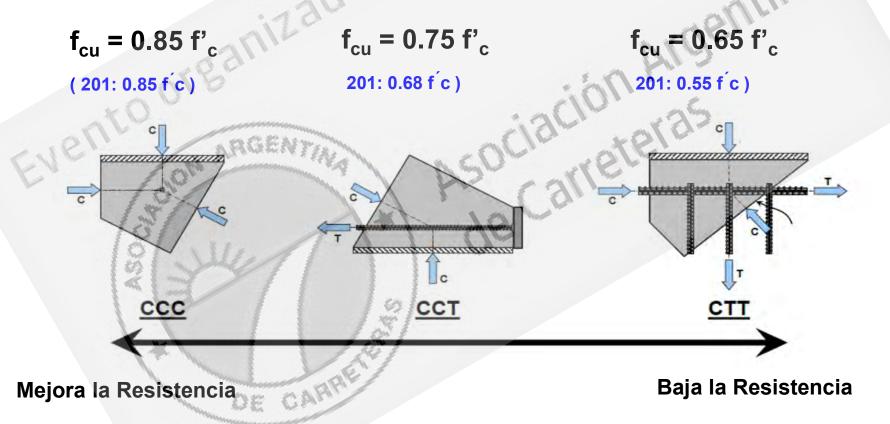
- (a) y (c): f_{cu} = 0.85 f'c (campos uniaxiales sin tracción transversa)
- (b) con tracciones transversales que generan deformaciones transversales ε₁


$$f_{cu} = \frac{f'_{c}}{0.8 + 170 \ \varepsilon_{1}} \le 0.85 \ f'_{c} \ \varepsilon_{1} = \varepsilon_{s} + (\varepsilon_{s} + 0.002) \cot^{2} \alpha_{s}$$

con armadura transversal, se puede tomar $\,\epsilon_1$ =0.002, resultando por ejemplo : fcu = 0.31 f´c para α =30°, y fcu = 0.55 f´c para α =45°.

En cualquier caso se pueden agregar armaduras longitudinales y utilizar la fórmula aditiva: F_{ns} = fcu Ac + A's fy




TIPOS DE NUDOS

RESISTENCA DE LAS ZONAS NODALES

DIMENSIÓN DE LAS ZONAS NODALES y PUNTALES

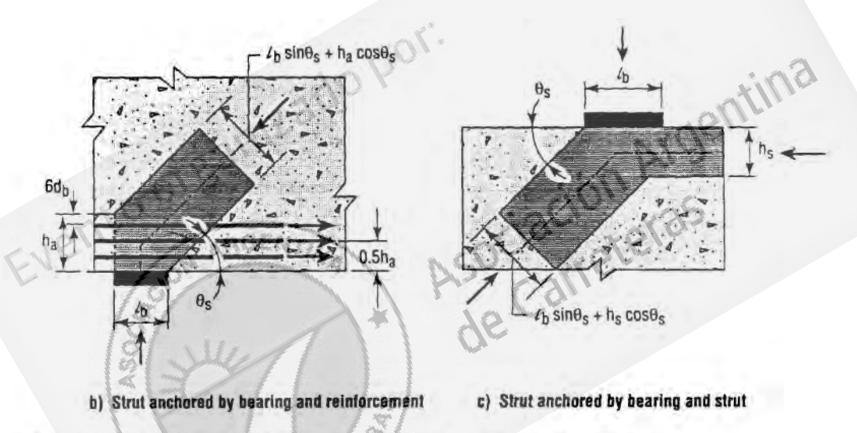
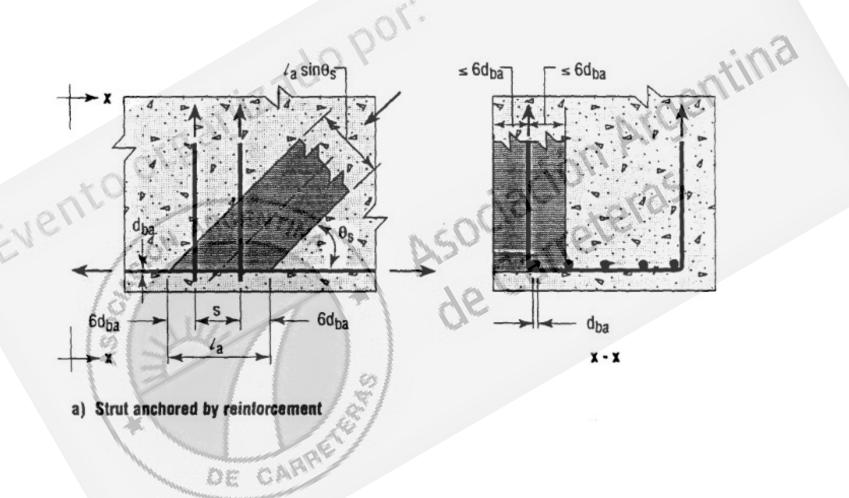



Figure 5.6.3.3.2-1-Influence of Anchorage Conditions on Effective Cross-Sectional Area of Strut

DIMENSIÓN DE LAS ZONAS NODALES y PUNTALES

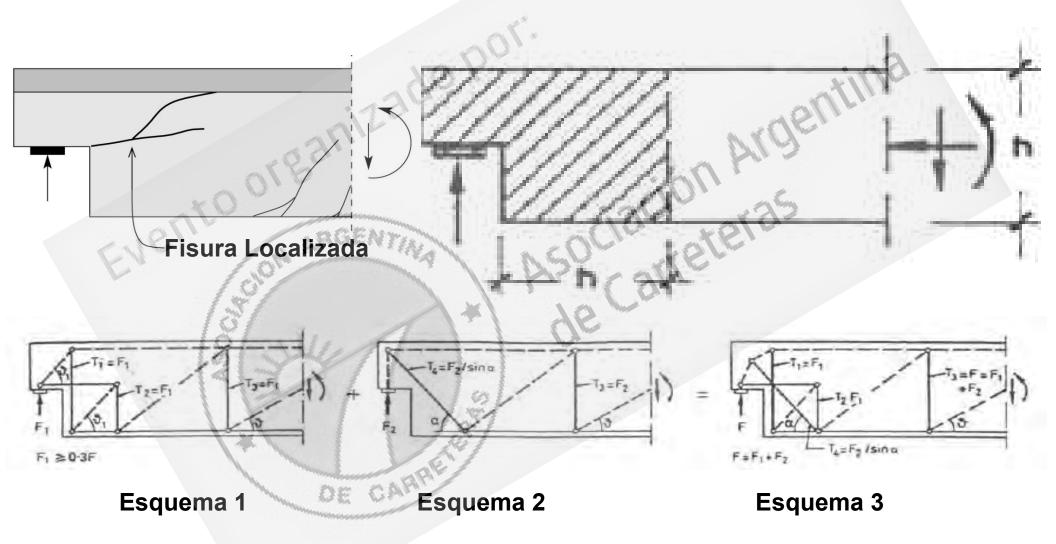
ARMADURA DE PIEL MÍNIMA

DE CARRE

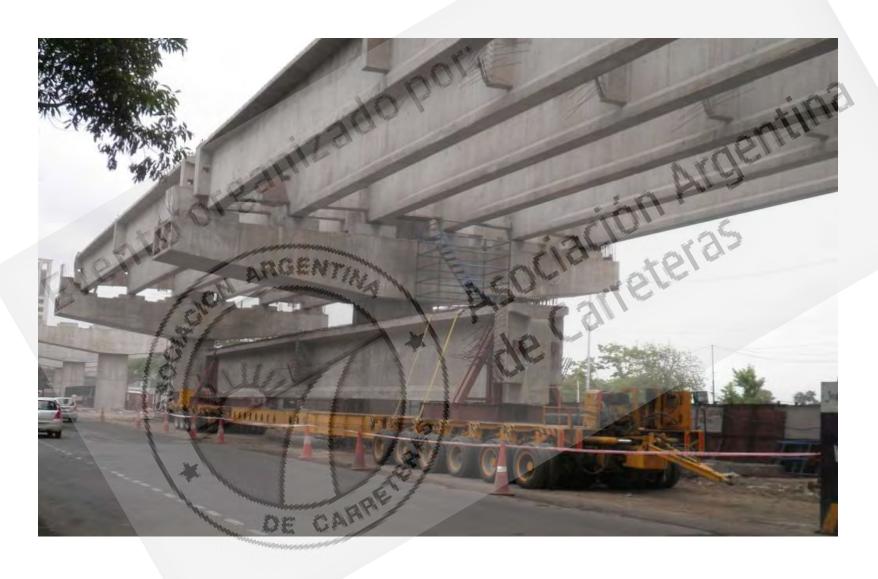
Mallas ortogonales en cada cara y ambas direcciones

Av/s (cm2/m) = 0.0015 bw (cm) * 100

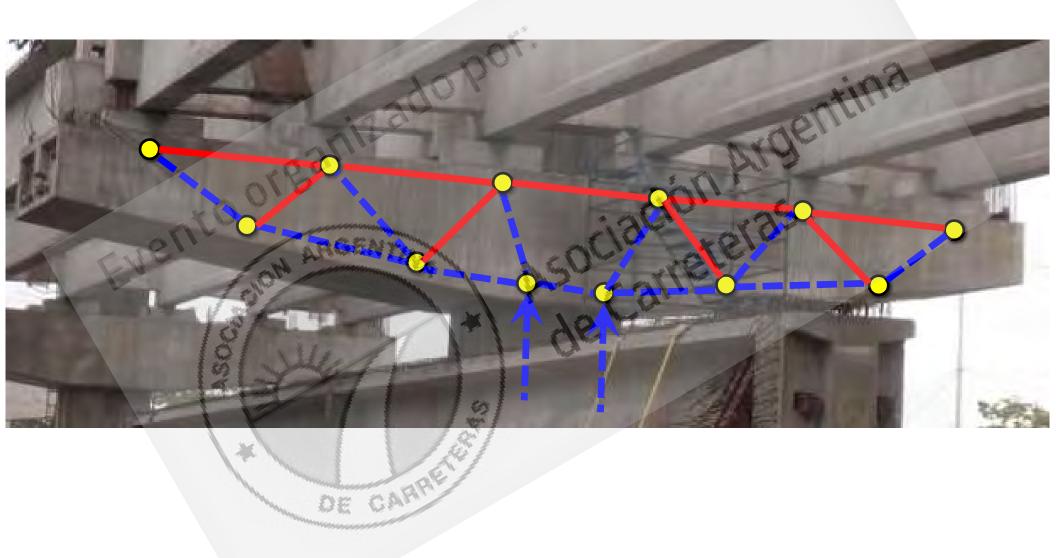
Con separación s = mínimo (d/4, 30cm)


EJEMPLOS TÍPICOS: EXTREMOS DE VIGAS DE PUENTES

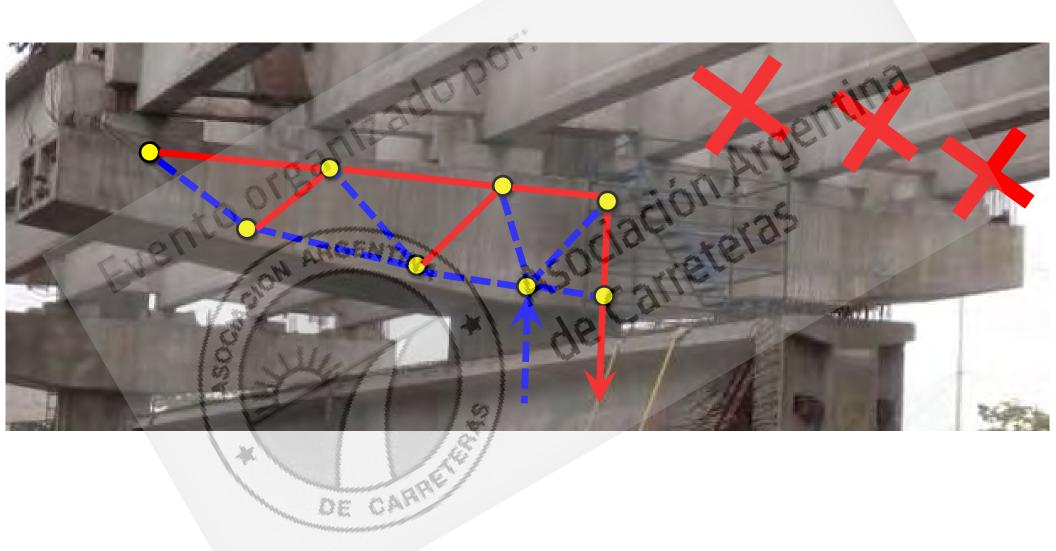
Apoyos de vigas a través de «narices» tanto en las vigas como en los dinteles



EXTREMOS DE VIGAS DE PUENTES



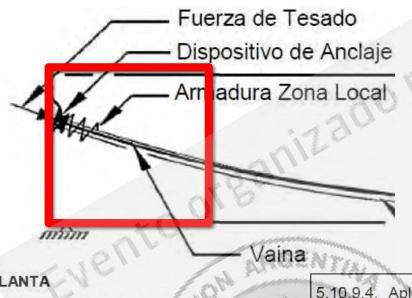
DINTEL PILAR PUENTE

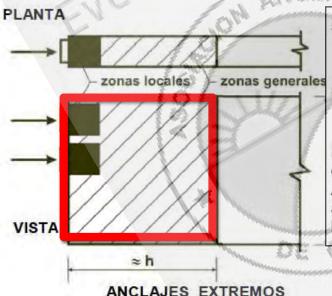


DINTEL PILAR PUENTE

DINTEL PILAR PUENTE

ZONA DE APLICACIÓN DE FUERZAS DE POSTESADO


Volumen de hormigón que circunda un dispositivo de anclaje o a cualquier armadura de confinamiento que se encuentra rodeando a dicho dispositivo. El CIRSOC propone trabajar con prismas rectangulares y, para anclajes circulares u ovalados, indica utilizar un prisma rectangular equivalente.

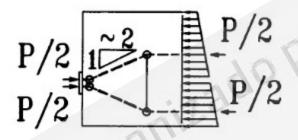


ZONA DE APLICACIÓN DE FUERZAS DE POSTESADO

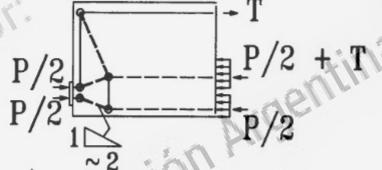
ZONA GENERAL (REGIÓN D):

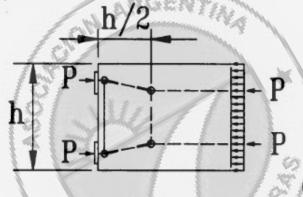
Zona adyacente a un anclaje dentro de la cual se produce la apertura de la fuerza de compresión hasta llegar a una distribución de tensiones "lineal" en la sección transversal de hormigón. Su máxima dimensión es del orden de la máxima dimensión de la sección transversal

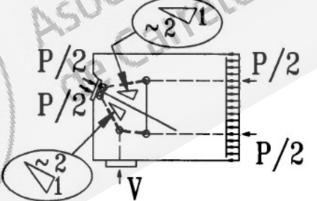
5.10.9.4. Aplicación del Modelo de Bielas y Tirantes al Diseño de la Zona General


5.10.9.4.1. Requisitos Generales

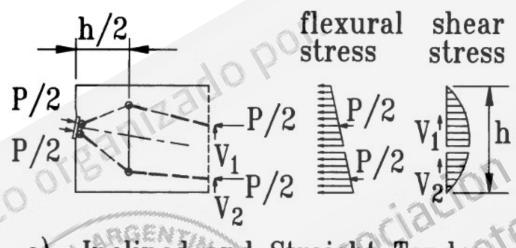
El flujo de fuerzas dentro de la zona de anclaje se puede aproximar mediante un modelo de bielas y tirantes como se especifica en el Artículo 5.6.3.

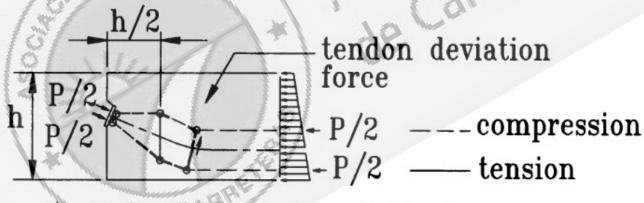

Al seleccionar un modelo de bielas y tirantes se deberán considerar todas las fuerzas que actúan en la zona de anclaje; el modelo deberá considerar un recorrido de cargas desde los anclajes hasta el final de la zona de anclaje.


MODELOS PUNTAL TENSOR PARA LA ZONA GENERAL


a) Concentric or Small Eccentricity

b) Large Eccentricity


c) Multiple Anchors


d) Eccentric Anchor and Support Reaction

MODELOS PUNTAL TENSOR PARA LA ZONA GENERAL

e) Inclined and Straight Tendon

f) Inclined and Curved Tendon

REQUISITOS PARA LA ZONA GENERAL

DE CARP

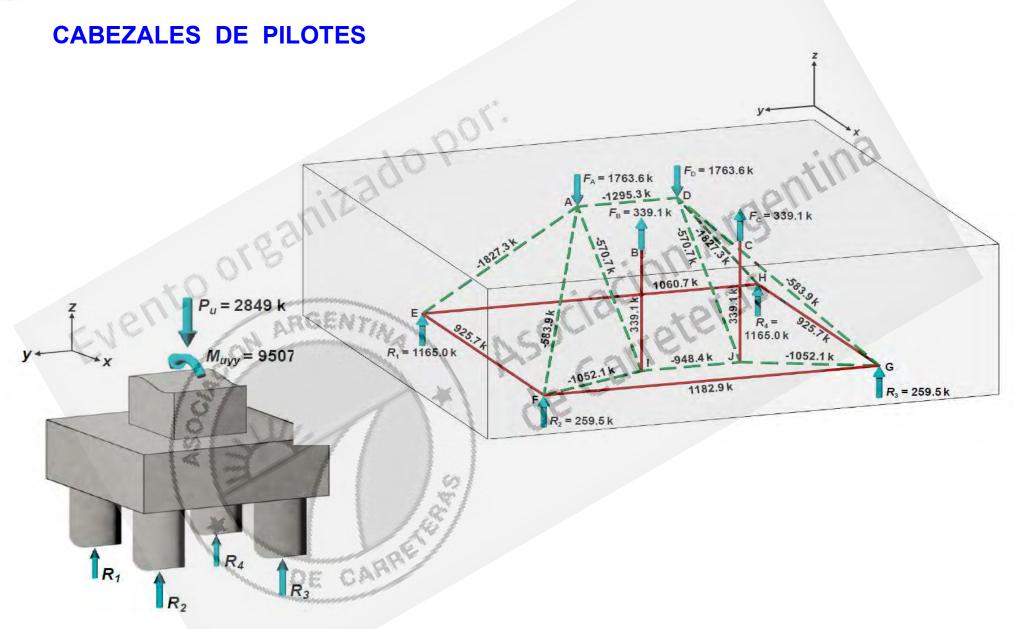
NODOS Y BIELAS

La tensión de compresión minorada del hormigón de la zona general no debe ser mayor que: $0.70 \ \phi \ f'_{ci}$. En áreas en las cuales debido a otras solicitaciones el hormigón puede estar muy fisurado en estado último, o si se anticipan grandes rotaciones inelásticas, la tensión de compresión minorada se deberá limitar a $0.60 \ \phi \ f'_{ci}$.

f'ci = resistencia nominal del hormigón al momento de aplicar la fuerza en el cable [MPa]

TENSORES

La tensión de tracción nominal de la armadura adherente se deberá limitar a f_y tanto para armadura no pretensada como para armadura pretensada adherente. La tensión de


REQUISITOS PARA LA ZONA LOCAL

Si se dispone armadura en la zona general que satisface el Artículo 5.10.9.3.2, y si la extensión del hormigón a lo largo del eje del cable delante del dispositivo de anclaje es como mínimo dos veces la longitud de la zona local como se define en el Artículo 5.10.9.7.1, la resistencia minorada del apoyo de los anclajes se deberá tomar como:

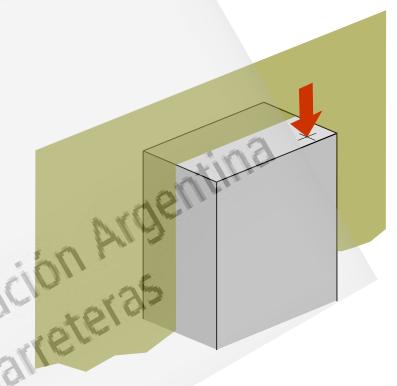
$$P_r = 1000 \phi f_n A_b$$
 (5.10.9.7.2-1)
Siendo \mathbf{f}_n el menor valor entre: $f_n = 0.7 f'_{ci} \sqrt{\frac{A}{A_g}}$ y $f_n = 2.25 f'_{ci}$
 $\phi = \text{factor de resistencia especificado en el Artículo 5.5.4.2}$

- máxima área de la parte de la superficie de apoyo que es similar al área cargada y concéntrica con la misma, y que no se superpone con las áreas similares correspondientes a los dispositivos de anclaje adyacentes [m²]
- = área bruta de la placa de apoyo calculada de acuerdo con los requisitos aquí especificados [m²]
- = área neta efectiva de la placa de apoyo calculada como el área Aq menos el área de los orificios de la placa de apoyo [m²]
- f'ci = resistencia nominal del hormigón al momento de aplicar la fuerza en el cable [MPa]

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

ESFUERZOS NORMALES EN HORMIGÓN ESTRUCTURAL

CONSIDERACIÓN DE EFECTOS DE SEGUNDO ORDEN


ESFUERZOS NORMALES PARALELOS Y DIFERENCIAS ENTRE CIRSOC 201 y 802

CARRE

COINCIDENCIAS EN EL FORMATO GENERAL

CIRSOC 201 y 802
$$\begin{cases} P_u \leq \varphi \ P_n \\ M_{ux} \leq \varphi \ M_{nx} \\ M_{uy} \leq \varphi \ M_{ny} \end{cases}$$

Donde

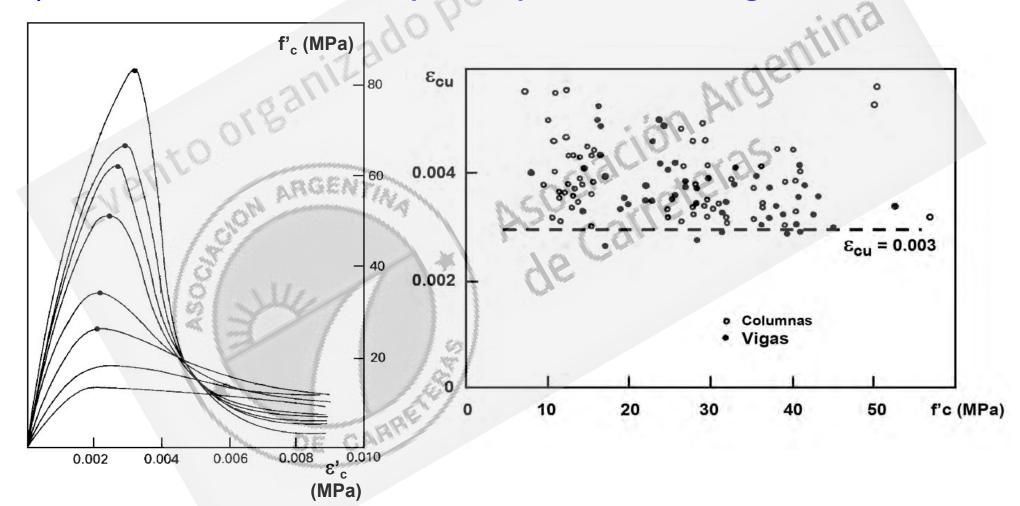
P_{II} = solicitacion axial calculada para cargas mayoradas

P_n = resistencia axial nominal ("real") de la sección

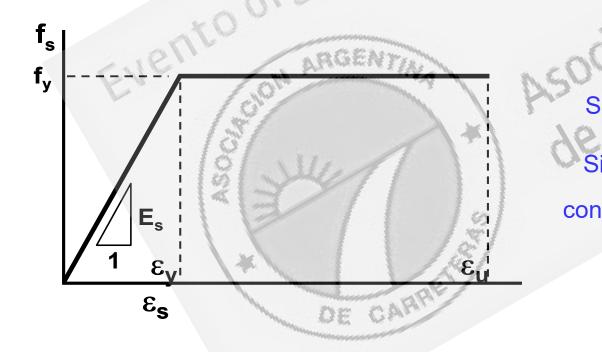
M_{II} = solicitación flexional calculada para cargas mayoradas

M_n = resistencia flexional nominal ("real") de la sección

φ= Coeficiente de reducción de resistencia en función del tipo de rotura (función de la deformación de la armadura más traccionada)



- >>> HIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)
- a) Mantenimiento de las secciones planas


- >> HIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)
- a) Mantenimiento de las secciones planas
- b) La deformación de rotura por compresión del hormigón es de 0.003

MIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)

- a) Mantenimiento de las secciones planas
- b) La deformación de rotura por compresión del hormigón es de 0.003
- c) El acero tiene comportamiento elasto-plástico perfecto

Para tracción y compresión vale:

Si
$$\varepsilon_s < \varepsilon_v$$
 \Rightarrow $f_s = E_s \varepsilon_s$

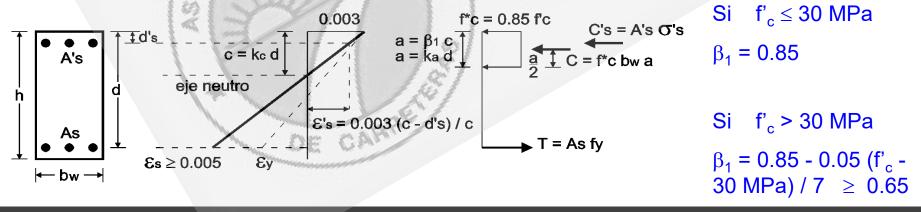
Si
$$\varepsilon_s \ge \varepsilon_y$$
 \Rightarrow $f_s = f_y$

 $E_{s} = 200.000 \text{ MPa}$

HIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)

- Mantenimiento de las secciones planas **a**)
- La deformación de rotura por compresión del hormigón es de 0.003 b)
- El acero tiene comportamiento elasto-plástico perfecto c)
- El hormigón no tiene resistencia a tracción d)

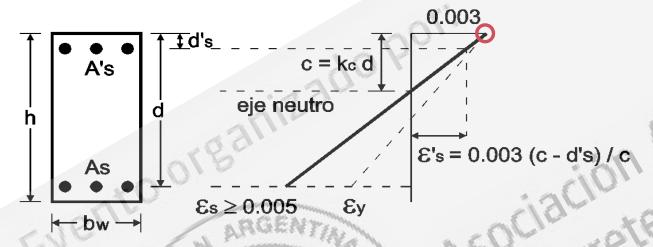
MIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)


- a) Mantenimiento de las secciones planas
- b) La deformación de rotura por compresión del hormigón es de 0.003
- c) El acero tiene comportamiento elasto-plástico perfecto
- d) El hormigón no tiene resistencia a tracción
- e) Es conocido el diagrama tensiones-deformaciones del hormigón

Ambos CIRSOC dan mucha libertad en cuanto a la forma del diagrama (p.e. trapecial, rectangular) en tanto y en cuanto se reproduzcan razonablemente los resultados experimentales

MIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)

- a) Mantenimiento de las secciones planas
- b) La deformación de rotura por compresión del hormigón es de 0.003
- c) El acero tiene comportamiento elasto-plástico perfecto
- d) El hormigón no tiene resistencia a tracción
- e) Es conocido el diagrama tensiones-deformaciones del hormigón
- f) Puede adoptarse el diagrama rectangular equivalente

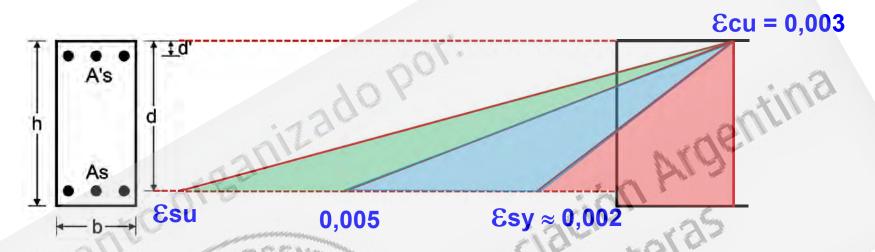


HIPÓTESIS DE CÁLCULO PARA ELEMENTOS CON ESBELTEZ NORMAL (201 y 802)

Puede adoptarse el diagrama rectangular equivalente

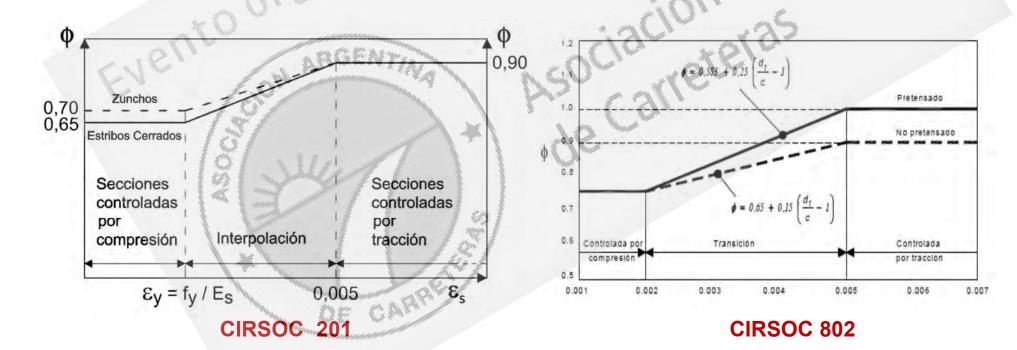
c = profundidad del eje neutro de deformaciones

a = profundidad del eje neutro de tensiones equivalentes = β_1 c

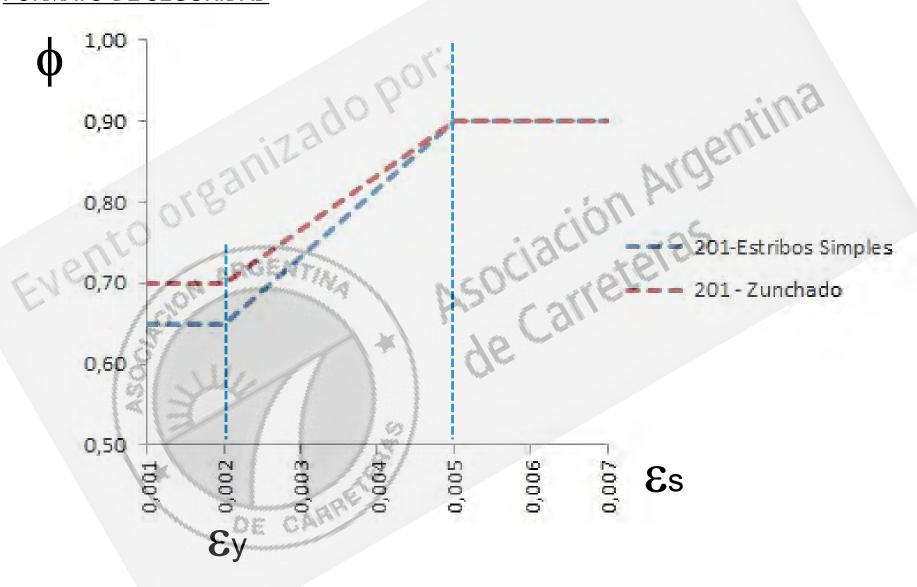

Si
$$f'_c \le 30 \text{ MPa} \Rightarrow \beta_1 = 0.85$$

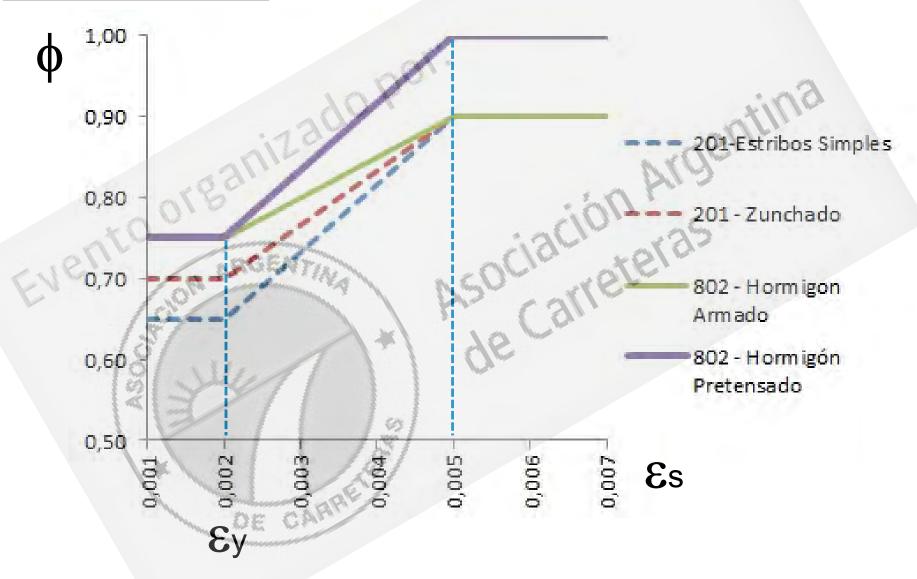
Si
$$f'_c > 30 \text{ MPa}$$
 \Rightarrow $\beta_1 = 0.85 - 0.05 (f'_c - 30 \text{ MPa}) / 7 $\geq 0.65$$

DEFINICIONES IMPORTANTES SOBRE EL COMPORTAMIENTO DE SECCIONES

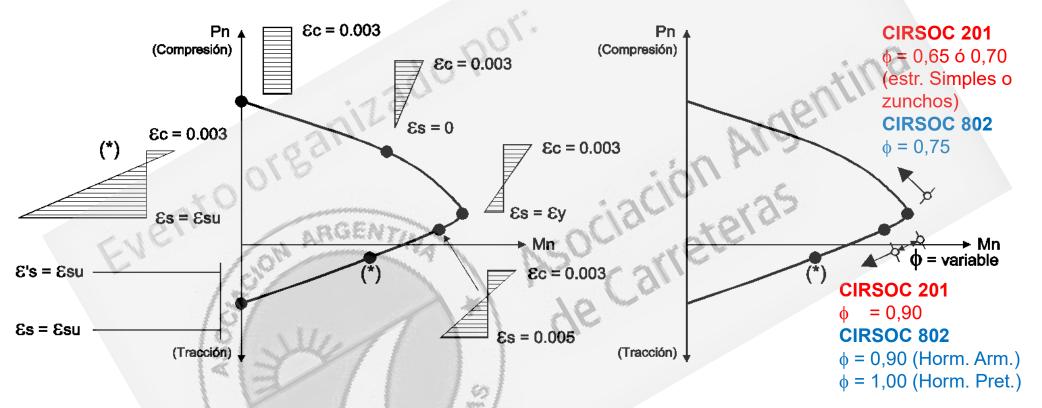

- Una sección se considera <u>controlada por la compresión</u> cuando la deformación neta por tracción en el acero es menor a la de fluencia. Para la armadura *fy = 420 MPa* y para todas las armaduras pretensadas, se permite fijar el límite de la deformación controlada por compresión en un valor igual a 0,002.
- Las secciones se consideran <u>controladas por la tracción</u> cuando la deformación neta por tracción en el acero más traccionado es mayor o igual que 0,005
- Las secciones de <u>transición</u> son las que experimentan deformaciones netas por tracción en el acero traccionado que se encuentran entre la de fluencia y 0,005

COINCIDENCIAS PARCIALES - FORMATO DE SEGURIDAD

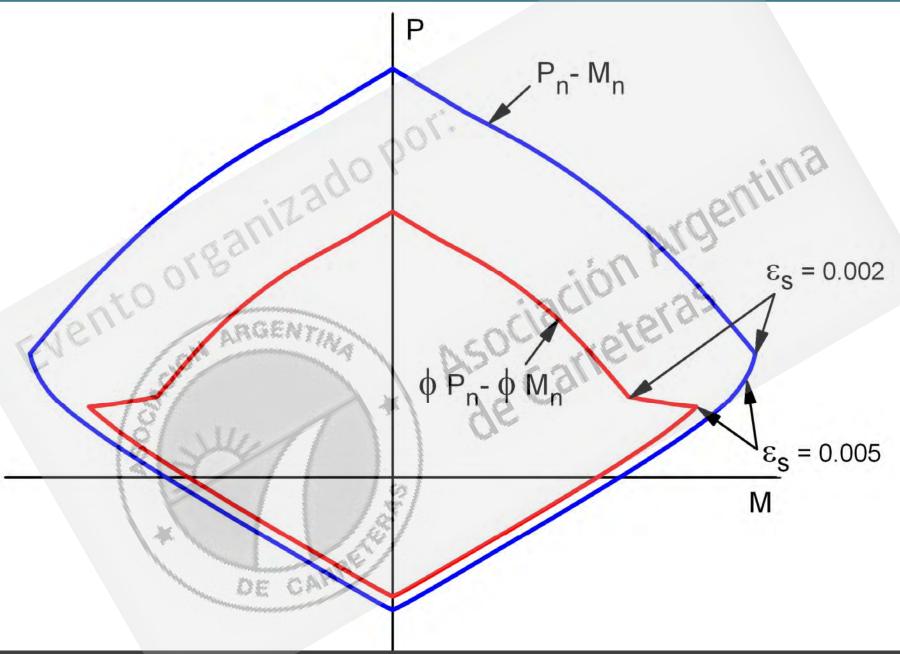




COINCIDENCIAS PARCIALES CON EL CIRSOC 201-05 FORMATO DE SEGURIDAD

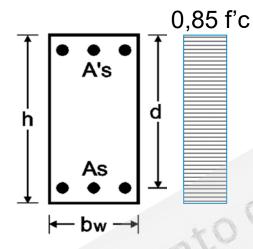


COINCIDENCIAS PARCIALES CON EL CIRSOC 201-05 FORMATO DE SEGURIDAD


Pn = 0.85 f'c (Ag - Ast - Aps) + fy Ast - Aps (fpe - Ep & Cu)

El diagrama de interacción en términos nominales coincide totalmente

Los coeficientes de reducción de resistencia coinciden sólo parcialmente



COMPRESIÓN CENTRADA

CIRSOC 201-05

$$Pn = 0.85 \, f'c \, (Ag - Ast) + fy \, Ast$$

Para contemplar una excentricidad mínima se limita a:

$$Pn,max = 0.80 \times [0.85 \text{ f'c } (Ag - Ast) + fy Ast]$$

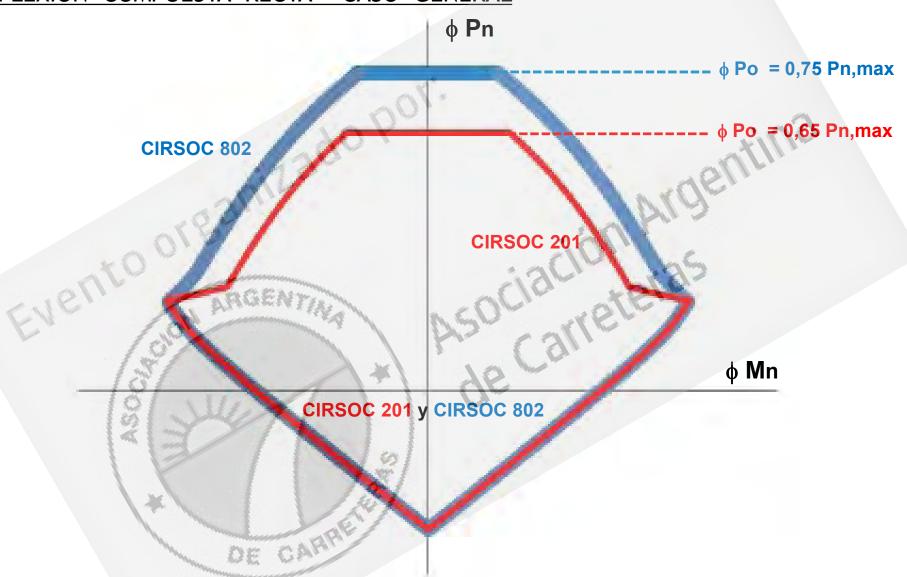
CIRSOC 802

Armadura Activa

Tensión de tesado luego de pérdidas

$$Pn = 0.85 \text{ f'c } (Ag - Ast - Aps) + fy Ast - Aps (fpe - Ep & Cu)$$

Módulo de Elasticidad Armadura Activa


Def. Esp. Rotura Hormigón

Para contemplar una excentricidad mínima se limita a:

Pn,max =
$$0.80 \times [0.85 \text{ f'c } (Ag - Ast - Aps) + \text{ fy Ast} - \text{Aps } (\text{fpe} - \text{Ep } \text{\&cu})]$$

FLEXIÓN COMPUESTA RECTA - CASO GENERAL

Será necesario rehacer los ábacos del CIRSOC 201-05 y deberá adaptarse el CIRSOC-FLEX

COMPRESIÓN CENTRADA: CUANTÍAS MÍNIMA Y MÁXIMA

CIRSOC 201

10.9.1. El área de armadura longitudinal, *Ast*, para *elementos comprimidos no compuestos*, debe ser:

CIRSOC 802

Cuantía Mínima

$$\frac{A_{s} f_{y}}{A_{g} f_{c}'} + \frac{A_{ps} f_{pu}}{A_{g} f_{c}'} \ge 0.135$$

Cuantía Máxima

$$\frac{A_s}{A_g} + \frac{A_{ps} f_{pu}}{A_g f_y} \le 0.08$$

V

$$\frac{A_{ps} f_{pe}}{A_{\sigma} f_{c}'} \le 0.30$$

FLEXIÓN SIMPLE: CUANTÍA MÍNIMA - HORMIGÓN NO PRETENSADO

CIRSOC 201

$$A_{s,min} = \frac{\sqrt{f'_c}}{4 f_y} b_w d$$

Siempre que

$$A_{s,min} \geq \frac{1.4 b_w}{f_v} d$$

Si en cada sección, el área *As* de la armadura de tracción adoptada excede al menos en un tercio (1/3) a la armadura determinada por cálculo, no es necesario aplicar los requisitos exigidos en los artículos 10.5.1. y 10.5.2.

CIRSOC 802

La resistencia a flexión minorada debe ser mayor o igual que el menor valor entre:

- 1,33 veces el momento mayorado requerido por las combinaciones de cargas para los estados límite de resistencia aplicables especificados en la Tabla 3.4.1-1
- El momento de fisuración definido como se verá enseguida

FLEXIÓN SIMPLE: CUANTÍA MÍNIMA - HORMIGÓN PRETENSADO

CIRSOC 201

18.8.2. La cantidad total de armadura tesa y no tesa debe ser la adecuada para desarrollar una carga mayorada igual, como mínimo, a 1,2 veces la carga de fisuración determinada en base al módulo de rotura, fr, indicado en el artículo 9.5.2.3.

Se puede en elementos solicitados a flexión en los cuales los valores de sus resistencias al corte y a flexión sean, como mínimo, el doble de los valores establecidos en el artículo 9.2.

CIRSOC 802

La resistencia a flexión minorada debe ser mayor o igual que el menor valor entre:

- 1,33 veces el momento mayorado requerido por las combinaciones de cargas para los estados límite de resistencia aplicables especificados en la Tabla 3.4.1-1
- El momento de fisuración definido como:

FLEXIÓN SIMPLE: CUANTÍA MÍNIMA - CIRSOC 802: MOMENTO DE FISURACIÓN

$$M_{cr} = \gamma_5 \left[\left(\gamma_1 \ f_r + \gamma_2 \ f_{cpe} \right) \gamma_1 \ 1000 \ S_c - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right]$$

fr = módulo de rotura del hormigón

fcpe = tensión de compresión en el hormigón debida exclusivamente a las fuerzas de pretensado efectivas en la fibra extrema de la sección en la cual las cargas aplicadas externamente provocan tensión de tracción [MPa]

Mdnc = momento total no mayorado debido a la carga permanente que actúa sobre la sección monolítica o no compuesta [kN·m]

Sc = módulo resistente para la fibra extrema de la sección compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción [m3]

Snc = módulo resistente para la fibra extrema de la sección monolítica o no compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción [m3]

γ1 = factor por variación de la fisuración por flexión

= 1,2 para estructuras de dovelas prefabricadas

 1,6 para todas las demás estructuras de hormigón

 γ 2 = factor por variación del pretensado

= 1,1 para cables adheridos

= 1,0 para cables no adheridos

γ3 = relación entre la tensión de fluencia mínima especificada y la tensión última a tracción de la armadura

= **0,84** para armadura ADN 420

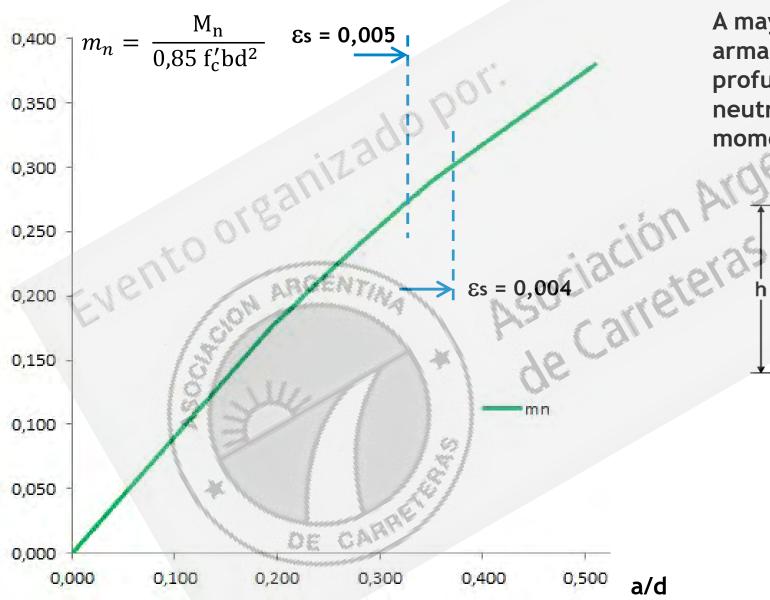
= **0,84** para armadura ADN 420 S

= 1,00 para estructuras de hormigón pretensado

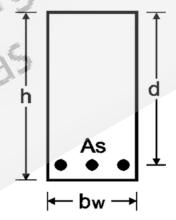
FLEXIÓN SIMPLE: CUANTÍA MÁXIMA

CIRSOC 201

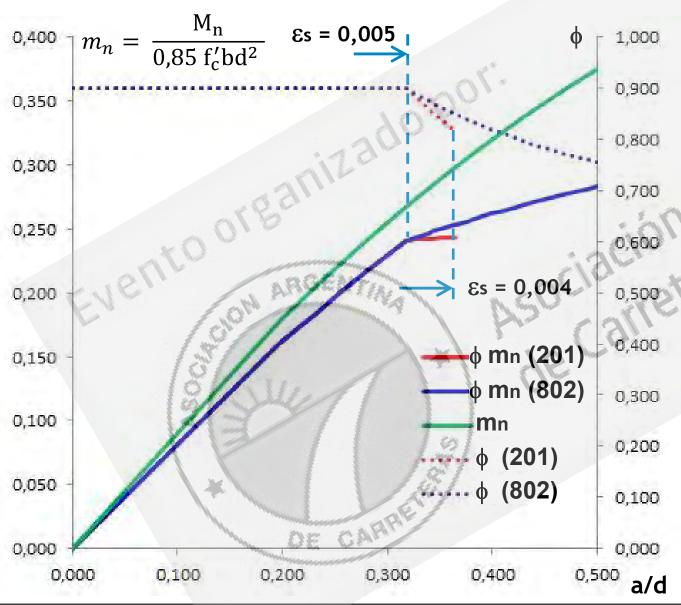
Para axiales menores que 0,10 f'c Ag la deformación en el acero traccionado debe ser mayor que 0,004


CIRSOC 802

No se especifica nada al respecto. En ediciones recientes de AASHTO, en los comentarios, se dice que, mediante el coeficiente de reducción de resistencia decreciente se compensa la falta de ductilidad con sobreresistencia. También se dice que se gana resistencia y ductilidad disponiendo armadura de compresión



FLEXIÓN SIMPLE: CUANTÍA MÁXIMA «ECONÓMICA»


A mayor cantidad de armadura «As» mayor profundidad de eje neutro «a» y mayor momento nominal «Mn»

FLEXIÓN SIMPLE: CUANTÍA MÁXIMA «ECONÓMICA»

Para deformaciones del acero menores que 0,005 disminuye el aprovechamiento de la armadura por la diminución de «»

El efecto se siente mucho más en el 201 que en el 802

La deformación límite inferior del 201 (0,004) no tiene efectos prácticos sobre la cuantía máxima

La cuantía máxima es «automática» por razones «económicas»

FLEXIÓN SIMPLE: TENSIONES «EN ROTURA» EN EL ACERO DE PRETENSADO

Para elementos con cables adherentes:

CIRSOC 201

$$f_{ps} = f_{pu} \left(1 - \frac{\gamma_p}{\beta_1} \left[\rho_p \frac{f_{pu}}{f'_c} + \frac{d}{d_p} (\omega - \omega') \right] \right)$$

$$\omega' = \rho' f_y / f'_c$$

$$\gamma_p = 0.55 \text{ para } f_{py} / f_{pu} \ge 0.80$$

= 0.40 para $f_{py} / f_{pu} \ge 0.85$
= 0.28 para $f_{py} / f_{pu} \ge 0.90$

$$\rho_{p} = \frac{A_{ps}}{bd_{p}}$$

$$\left[\rho_{p} \frac{f_{pu}}{f'_{c}} + \frac{d}{d_{p}}(\omega - \omega')\right] \ge 0.17$$

$$d' \leq 0,15 d_p$$

CIRSOC 802

$$f_{ps} = f_{pu} \left(1 - k \frac{c}{d_p} \right) \leq fpy$$

con

$$k = 2\left(1.04 - \frac{f_{py}}{f_{pu}}\right)$$

fpu = resistencia a la tracción especificada del acero de pretensado [MPa]

fpy = tensión de fluencia del acero de pretensado [MPa]

dp = distancia entre la fibra extrema comprimida y el baricentro de los cables de pretensado [m]

c = distancia entre el eje neutro y la cara comprimida [m]

FLEXIÓN SIMPLE: TENSIONES «EN ROTURA» EN EL ACERO DE PRETENSADO

Para elementos con cables NO adherentes:

CIRSOC 201

luz/altura ≤35:

$$\mathbf{f}_{ps} = \mathbf{f}_{se} + 70 + \frac{\mathbf{f'}_c}{100 \, \rho_p}$$

pero con

$$f_{ps} \leq f_{py}$$

У

$$f_{ps} \leq f_{se} + 420$$

luz/altura > 35:

$$f_{ps} = f_{se} + 70 + \frac{f'_{c}}{300 \rho_{p}}$$

pero con

y

$$f_{ps} \leq f_{se} + 210$$

cuantía de la armadura tesa; relación entre Aps y b d,

CIRSOC 802

$$f_{ps} = f_{pe} + 6205 \left(\frac{d_p - c}{e} \right) \leq f_{py}$$

con

$$\ell_e = \frac{2 \ell_i}{2 + W_s}$$

c = distancia entre la fibra extrema comprimida y el eje neutro suponiendo que el cable de pretensado ha entrado en fluencia

le = longitud efectiva del cable [m]

li = longitud del cable entre anclajes [m]

Ns = número de articulaciones de apoyo que cruza el cable entre anclajes o entre puntos de adherencia discretos

fpy = tensión de fluencia del acero de pretensado [MPa]

fpe = tensión efectiva en el acero de pretensado en la sección considerada luego de todas las pérdidas [MPa]

FLEXIÓN COMPUESTA OBLICUA

$$\begin{aligned} & P_u & \leq \varphi \ P_n \\ & M_{ux} \leq \varphi \ M_{nx} \\ & M_{uy} \leq \varphi \ M_{ny} \end{aligned}$$

Donde

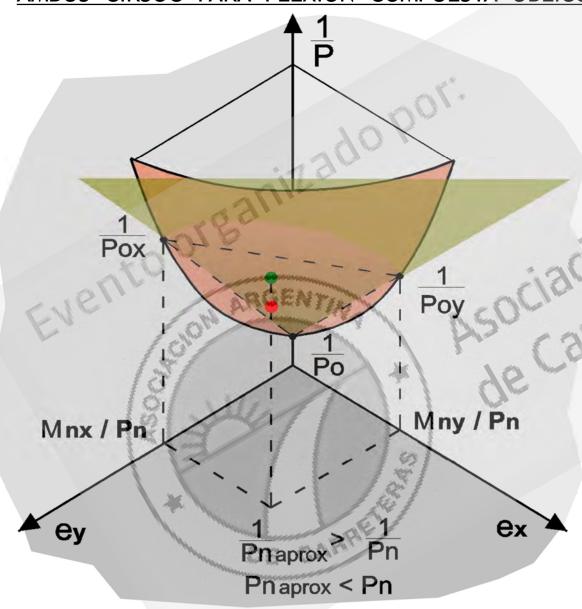
rgas ma P_{II} = solicitacion axial calculada para cargas mayoradas

P_n = resistencia axial nominal ("real") de la sección

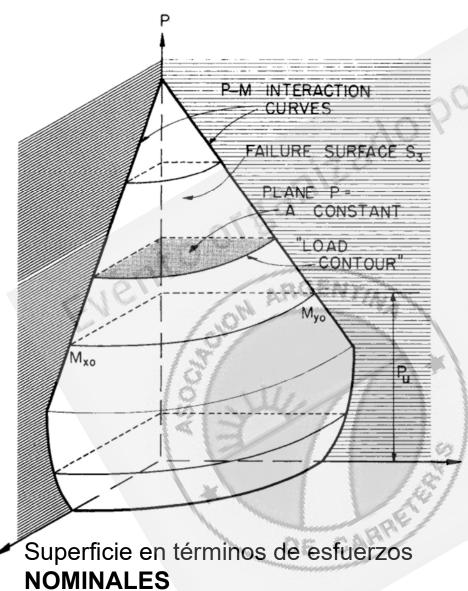
M_{II} = solicitación flexional calculada para cargas mayoradas

M_n = resistencia flexional nominal ("real") de la sección

φ= Coeficiente de reducción de resistencia en función del tipo de rotura (función de la deformación de la armadura más traccionada)


FLEXIÓN COMPUESTA OBLICUA

AMBOS CIRSOC PARA FLEXIÓN COMPUESTA OBLICUA


Pu ≥ 0,10 f'c Ag

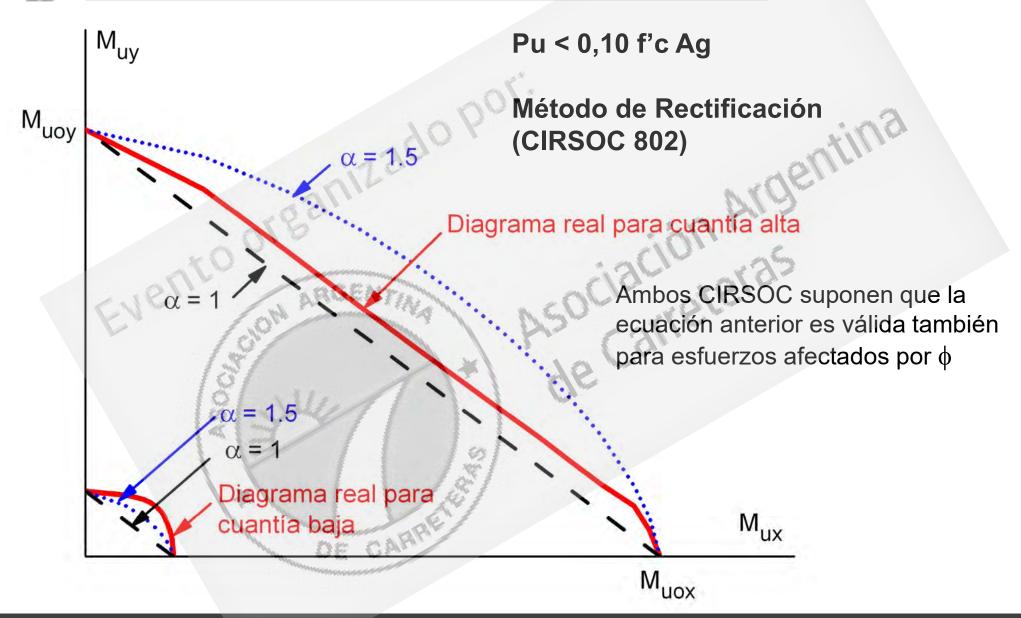
Método de las Inversas

$$\phi P_n \approx \frac{1}{\frac{1}{\phi P_{nx}} + \frac{1}{\phi P_{ny}} - \frac{1}{\phi P_{no}}}$$

FORMULACIÓN GENERAL

$$\left(\frac{M_{nx}}{M_{nox}}\right)^{\alpha} + \left(\frac{M_{ny}}{M_{noy}}\right)^{\beta} = 1$$

Si se conocen α y β y se determinan las resistencias a Flexión Compuesta Recta según los ejes principales, puede decirse si una sección es segura o no


FORMULACIÓN SIMPLIFICADA

$$\left(\frac{M_{nx}}{M_{nox}}\right)^{\alpha} + \left(\frac{M_{ny}}{M_{noy}}\right)^{\alpha} = 1$$

Para secciones rectangulares α varía entre 1.15 y 1.55 con un valor "razonable" de 1.50 para secciones rectangulares con armadura uniforme

DIFERENCIAS ENTRE 201 Y 802 PARA BAJAS COMPRESIONES

EFECTOS DE SEGUNDO ORDEN PARALELOS Y DIFERENCIAS ENTRE CIRSOC 201 y 802

CARRE

Cuándo un sistema es indesplazable?

DE CARR

EFECTOS DE SEGUNDO ORDEN

Cuándo un sistema es indesplazable?

CIRSOC 201

$$Q = \frac{\sum P_u \Delta_o}{V_{us} \ell_c} \leq 0.05$$

 ΣP_u Carga vertical total mayorada

V_{us} Esfuerzo de corte horizontal en el piso considerado

Desplazamiento relativo de primer orden entre la parte superior e inferior del entrepiso debido a Vus

Longitud del elemento comprimido en un pórtico, medida entre los ejes de los nudos del pórtico

CIRSOC 802

Cuando las cargas laterales o gravitatorias mayoradas provocan un desplazamiento lateral, ∆, menor que **१u/1500**, calculado mediante un análisis de pórtico elástico convencional de primer orden

EFECTOS DE SEGUNDO ORDEN

En sistemas indesplazables los efectos de segundo orden se pueden despreciar cuando:

CIRSOC 201

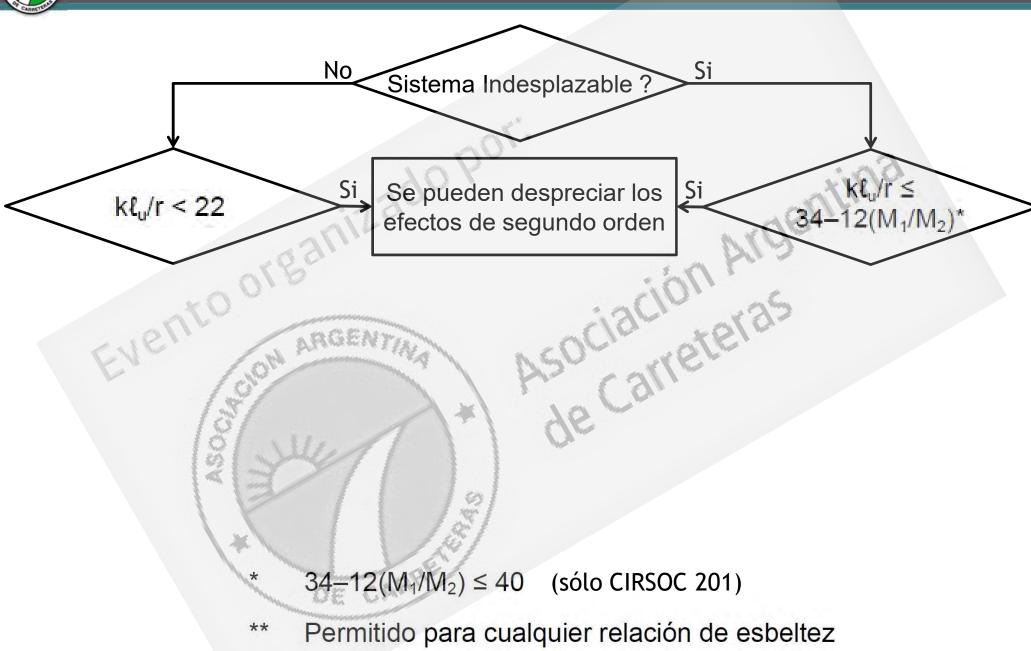
$$\frac{k \ell_u}{r} \leq 34 - 12 \left(\frac{M_1}{M_2} \right)$$

$$con \quad 34 - 12 \left(\frac{M_1}{M_2} \right) \le 40$$

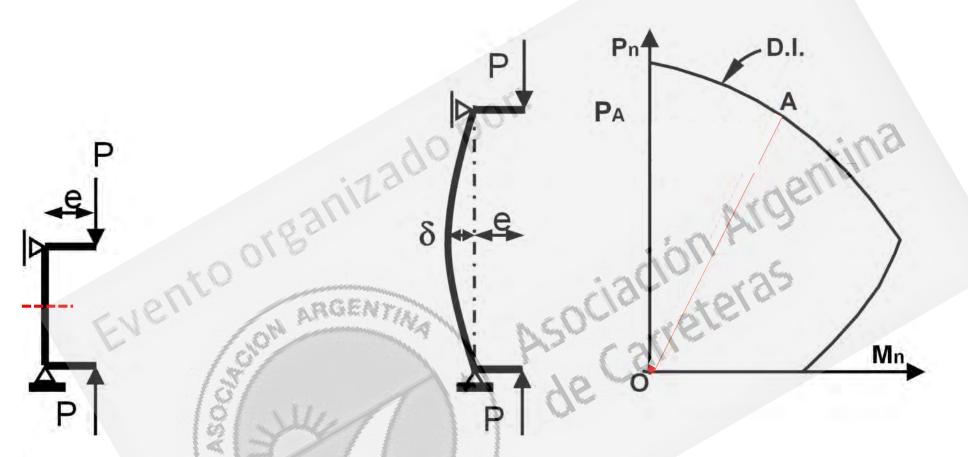
CIRSOC 802

$$\frac{k \ell_u}{r} \leq 34 - 12 \left(\frac{M_1}{M_2} \right)$$

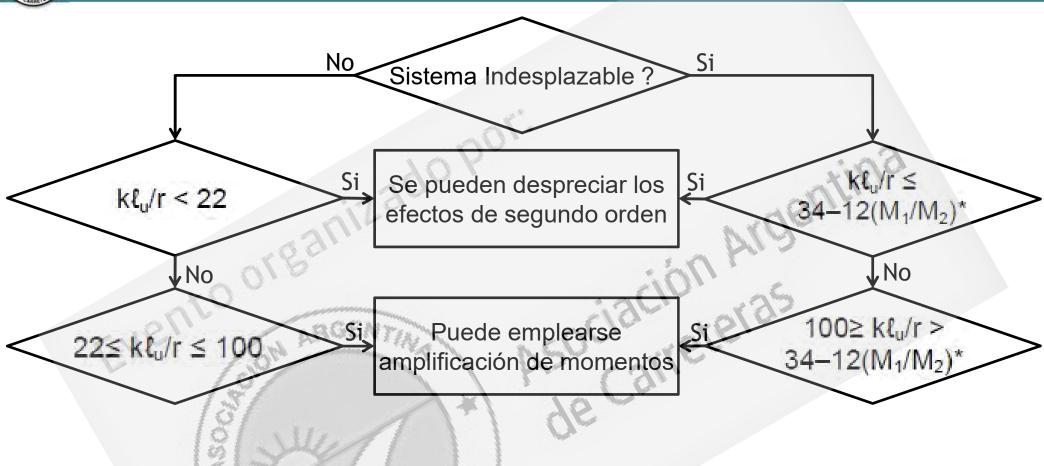
No se establece un límite a la expresión anterior


donde el término M_1 / M_2 es positivo si el elemento se deforma con curvatura simple (momentos extremos de igual signo) y negativo si el elemento se deforma con curvatura doble (momentos extremos de distinto signo).

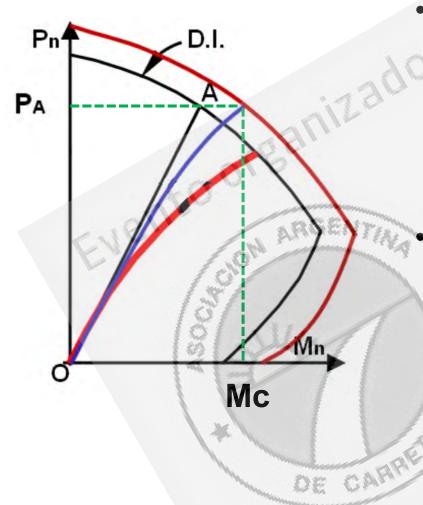
Los momentos M_1 y M_2 son de primer orden.


En sistemas desplazables los efectos de segundo orden se pueden despreciar cuando:

CIRSOC 201 y 802:



Curva OA: Línea "casi" recta. La curvatura resulta imperceptible. Columna es "corta". Pueden despreciarse los efectos de segundo orden. Rotura de sección. La sección puede dimensionarse para el momento de primer orden: $M_e = P \times e$



- * $34-12(M_1/M_2) \le 40$ (sólo CIRSOC 201)
- ** Permitido para cualquier relación de esbeltez

Qué sabemos y qué necesitamos saber?

- Sabemos que los efectos de segundo orden no pueden ser despreciados porque disminuyen la capacidad axial de la columna (curva roja)
 - Necesitamos cuantificar el momento «Mc» que combinado con «Pa» permitan dimensionar la armadura necesaria para resistir «Pa» considerando los efectos de segundo orden (diagrama de interacción externo)

EFECTOS DE SEGUNDO ORDEN

CIRSOC 201 y 802: Ambos reglamentos adoptan el método de amplificación de momentos, es decir

$$M_c = \delta_b M_{2b} + \delta_s M_{2s}$$

$$f_c = \delta_b f_{2b} + \delta_s f_{2s}$$

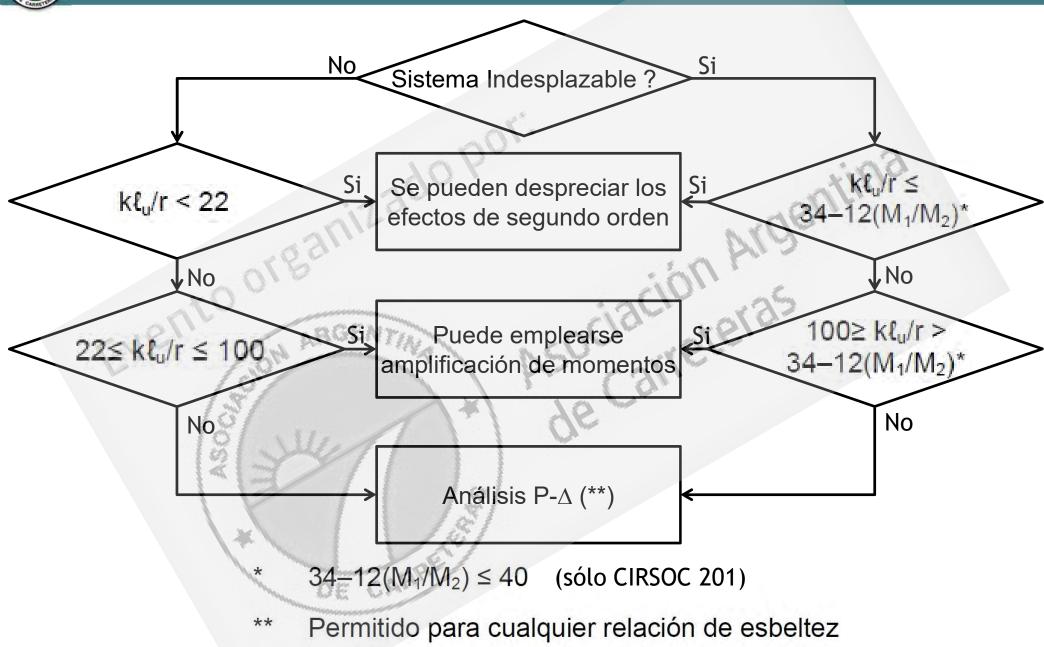
$$f_c = \delta_b f_{2b} + \delta_s f_{2s}$$

donde

$$\delta_b = \frac{C_m}{1 - \frac{P_u}{\Phi_K P_e}} \ge 1.0$$

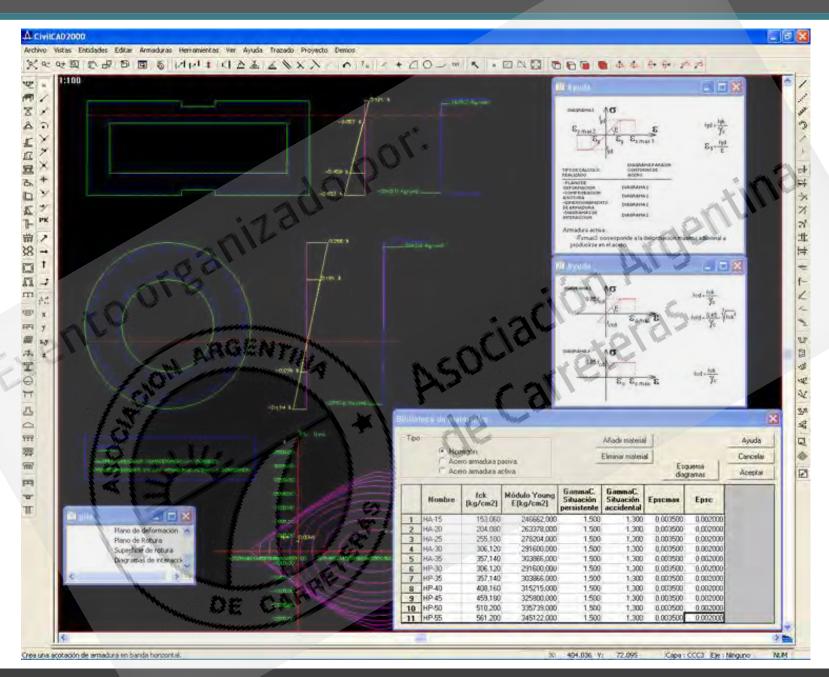
$$\delta_s = \frac{1}{1 - \frac{\sum P_u}{\phi_v \sum P}}$$

El cálculo de los coeficientes es igual para ambos reglamentos.


Siendo:

M2b = momento en un elemento comprimido debido a las cargas gravitatorias mayoradas, que no provoca desplazamiento lateral apreciable, calculado mediante un análisis de pórtico elástico convencional de primer orden, siempre positivo [kN·m]

M2s = momento en un elemento comprimido debido a cargas laterales o gravitatorias mayoradas que provocan un desplazamiento lateral, ∆, mayor que **ℓu/1500**, calculado mediante un análisis de pórtico elástico convencional de primer orden, siempre positivo [kN·m] Pu = carga axial mayorada [kN]


φK = factor de reducción de rigidez; **0,75** para elementos de hormigón y **1,0** para elementos de acero y aluminio Pe = carga de pandeo de Euler [kN]

ANTE LA IMPLEMENTACIÓN DE UN NUEVO REGLAMENTO DE PUENTES: CIRSOC SERIE 800

Asociación Argentina de Carreteras Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

TORSION

Raúl D. Bertero

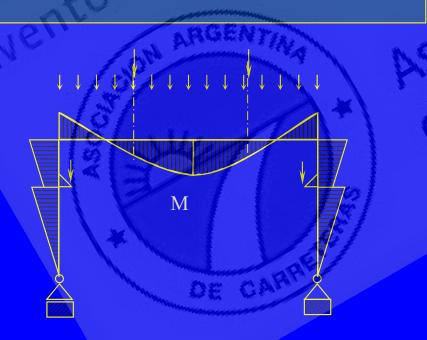
DE CH

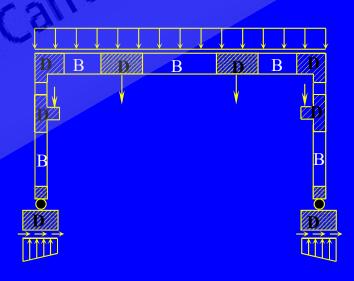
INTRODUCCION A LA TEORIA DEL CAMPO DE COMPRESION MODIFICADA

DISEÑO AL CORTE

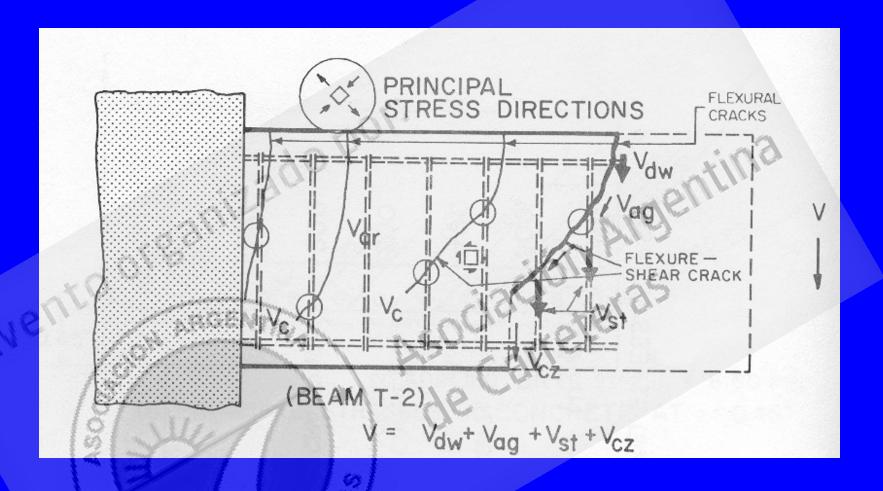
DISEÑO A LA TORSION

INTRODUCCION A LA TEORIA DEL CAMPO DE **COMPRESION MODIFICADA**

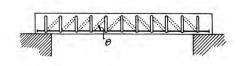

Análisis Estructural


REGIONES – B

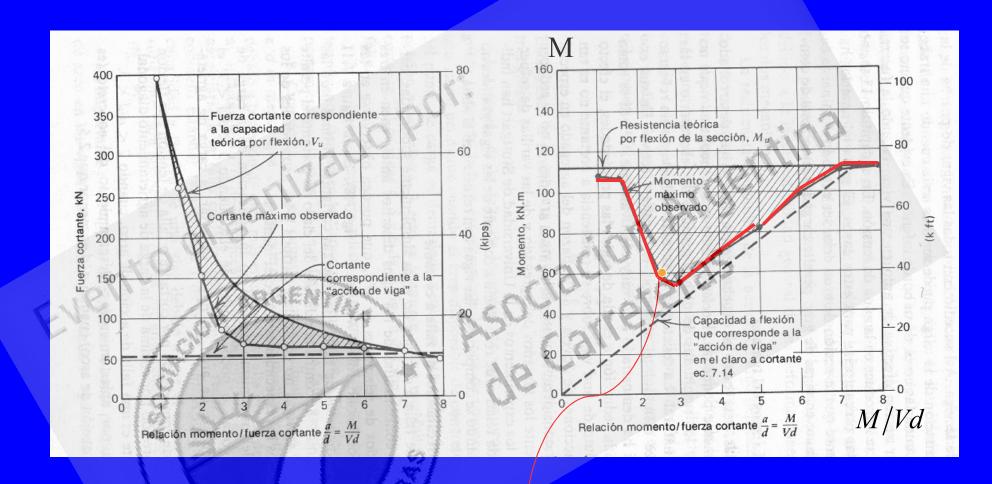
- T. De Vigas
- Hipótesis de Bernoulli-Navier
- Problema unidimensional $\begin{cases} V \\ N \end{cases}$


REGIONES – D

- Discontinuidades geométricas, cargas
- Problema 2-D
- Viga de Gran Altura, Ménsula corta

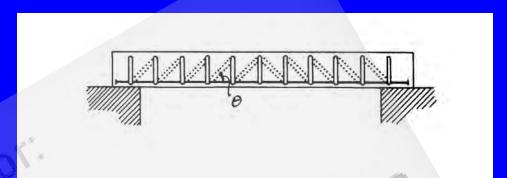


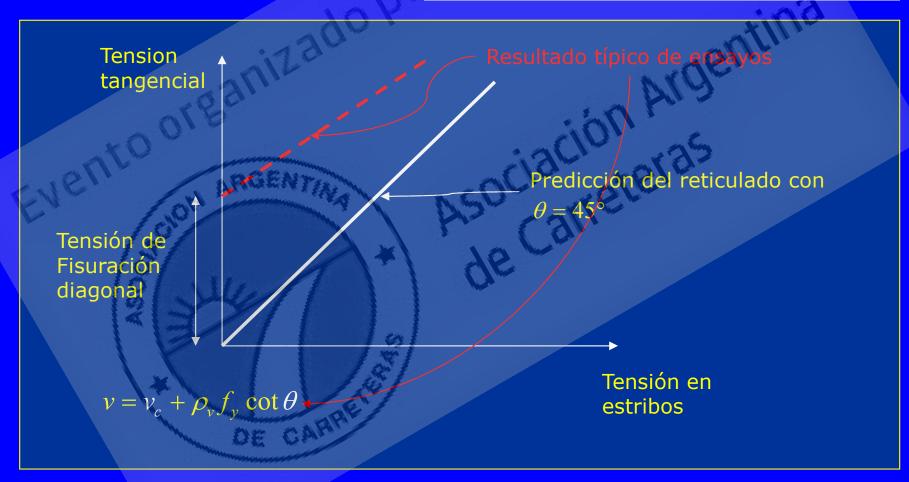
¿Por qué diseño al corte en Hormigón Armado?



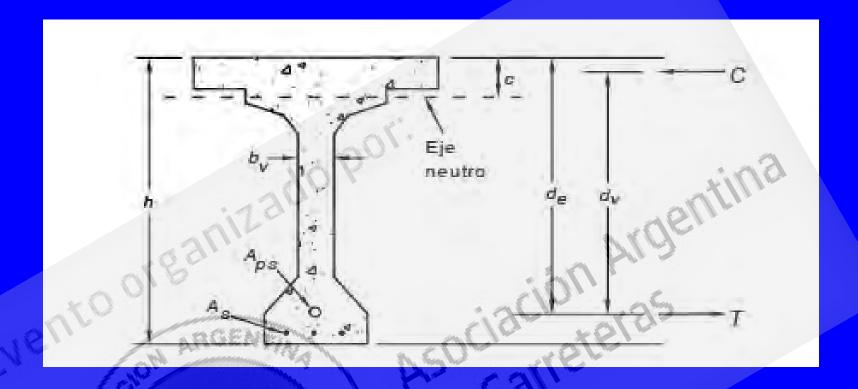
El hormigón se fisura a tensiones relativamente bajas y la estructura se transforma en una estructura discontinua.

¿Por qué diseño al corte en Hormigón Armado?


La estructura falla por corte sin alcanzar la resistencia a la flexión.


Modelo del reticulado

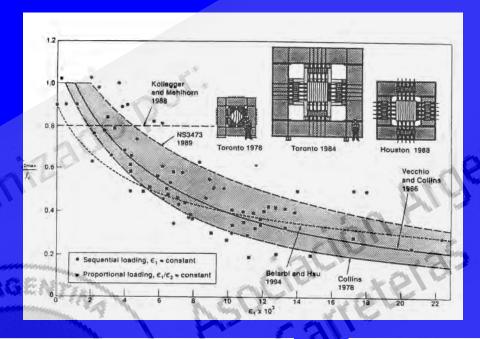
Ritter (1899) Morsch (1920)

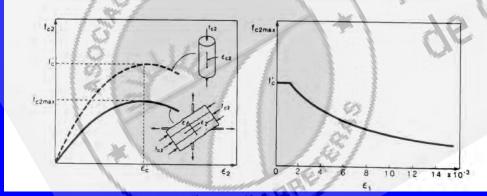

$$\theta = 45^{\circ}$$

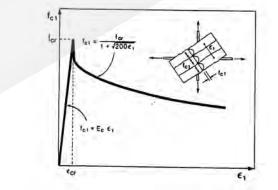
$$v = \rho_v f_v$$

Nomenclatura CIRSOC 802

Tension tangencial de referencia:

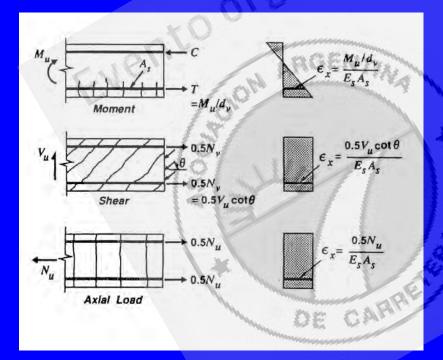

DE CARP


$$v = \frac{V}{b_{\nu}d_{\nu}}$$


Resistencia al corte de una sección de Homigón Armado

Universidad de Toronto (80')

Teoría del campo de compresión modificado


La resistencia de la biela comprimida y la trasmisión de tensiones de tracción entre fisuras dependen de la deformación transversal a la biela.

Teoría del campo de compresión modificado

$$V = V_c + V_s$$

$$v = v_c + \rho_v f_v \cot \theta$$

$\beta y \theta$ son funciones de ε_x

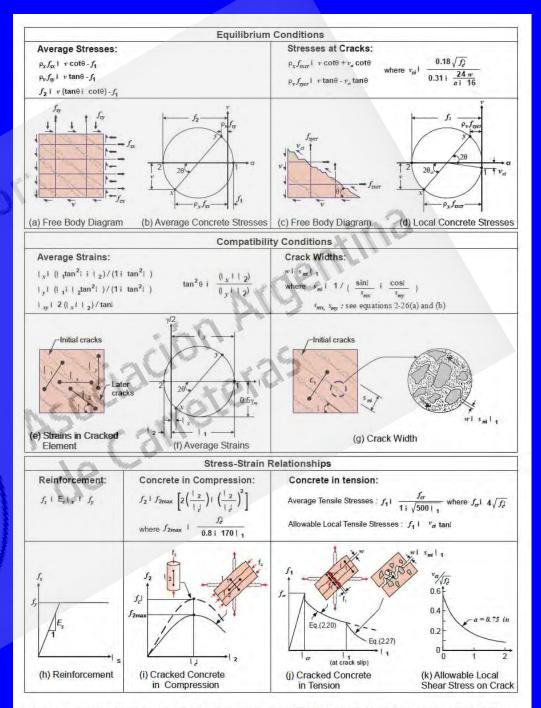
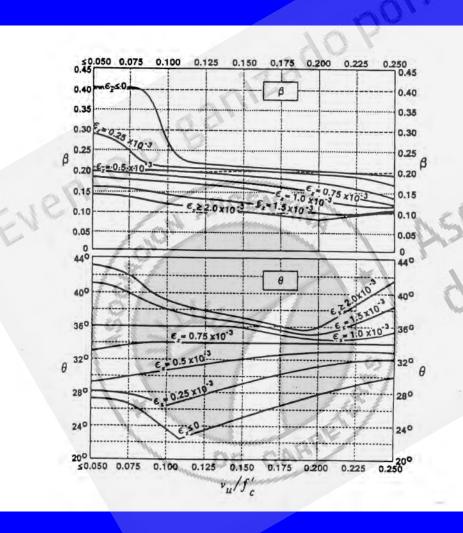
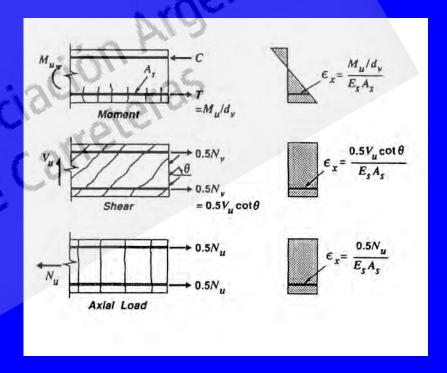
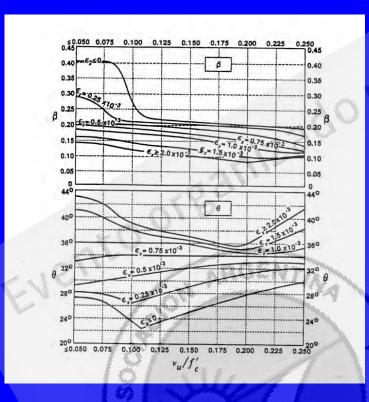



Figure A-17 Description of Modified Compression Field Theory (Vecchio and Collins, 1986)

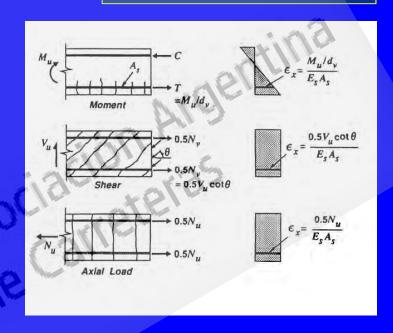
Resistencia al corte de una sección de Homigón Arm./Pret.


Teoría del campo de compresión modificado

$$|\mathbf{v} = \beta 83 \sqrt{f_c'} + \rho_v f_{sy} \cot \theta + \mathbf{v}_{\rho}|$$


83, psi a MPa y kN/m2

 $\beta y \theta$ son funciones de ε_x


Resistencia al corte de una sección de Homigón Arm./Pret.

Teoría del campo de compresión modificado

$$v = \beta 83 \sqrt{f_c'} + \rho_v f_{sy} \cot \theta + v_p$$

 $\beta y \theta$ son funciones de ε_x

CIRSOC 802

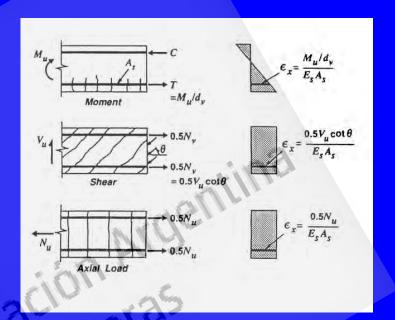
Supone, $s_x=30$ cm $A_g = 19$ mm

$$\beta = \frac{4.8}{1 + 750\varepsilon_{\rm S}}$$

$$\theta = 29^{\circ} + 3500 \, \varepsilon_{\rm s}$$

ACI 318, β =2 y θ =45°

$$\varepsilon_{s} = \frac{\frac{M_{u}}{d_{v}} + 0.5N_{u} + 0.5(V_{u} - V_{p})\cot\theta - A_{ps}f_{p0}}{E_{s}A_{s} + E_{p}A_{ps}} \simeq \frac{\frac{M_{u}}{d_{v}} + 0.5N_{u} + (V_{u} - V_{p}) - A_{ps}f_{p0}}{E_{s}A_{s} + E_{p}A_{ps}}$$


Resistencia al corte de una sección de Homigón Armado

Teoría del campo de compresión modificado

$$V = \beta 83 \sqrt{f_c'} + \rho_v f_{sy} \cot \theta + V_p$$

$$\beta = \frac{4.8}{1 + 750\varepsilon_{\rm S}}$$

$$\theta = 29^{\circ} + 3500 \ \varepsilon_s$$

Puedo aumentar las tensiones de corte agregando estribos siempre que no falle la biela comprimida

$$V_n \leq \frac{1}{4} f_c' + V_p$$

DE CARRE

Asociación Argentina de Carreteras

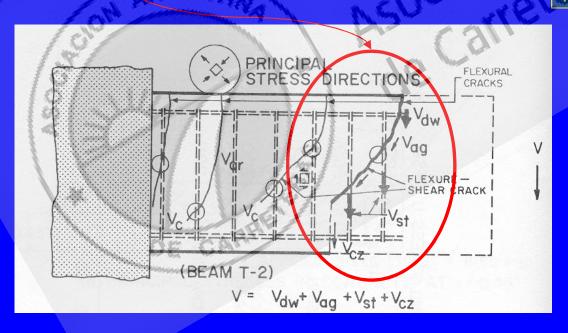
Armadura mínima de corte

Controlar el ancho de la fisura de corte

CIRSOC 802

$$O \qquad si v_{u} < 0.5 \left(v_{c} + v_{p}\right) \phi$$

$$0.083 \sqrt{f_{c}'} \frac{1}{f_{y}} \quad si v_{u} \ge 0.5 \left(v_{c} + v_{p}\right) \phi$$

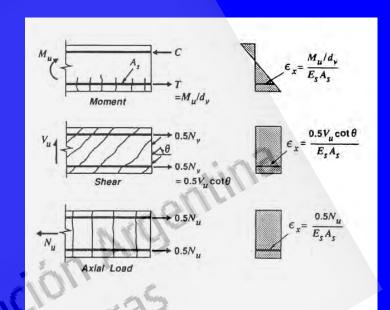

Resistencia al corte según CIRSOC 802

$$V_n = V_c + V_s + V_p$$

Resistencia aportada por el hormigón

Resistencia aportada por la armadura de corte

Resistencia aportada por la componente del pretensado



Limitar el ancho de la fisura de corte es fundamental para preservar el mecanismo de trabazón del agregado.

Resistencia al corte proporcionada por el hormigón según CIRSOC 802

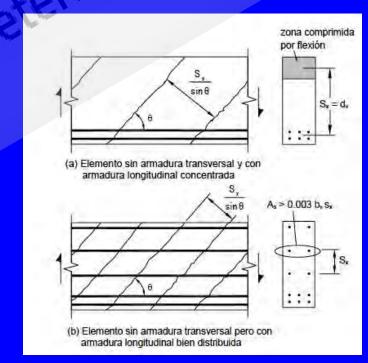
Teoría del campo de compresión modificado

$$V_c = \beta 83 \sqrt{f_c'}$$

Si
$$\rho_v \geq \rho_{vmin}$$

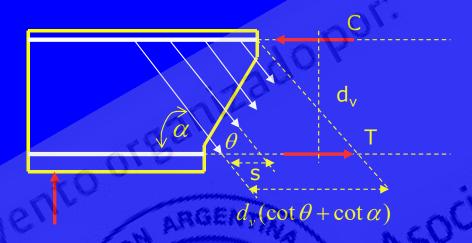
$$\beta = \frac{4.8}{1 + 750\varepsilon_{\rm S}}$$

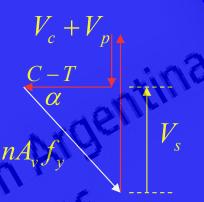
$$\varepsilon_s = \frac{\frac{M_u}{d_v} + 0.5N_u + (V_u - V_p) - A_{ps}f_{p0}}{E_sA_s + E_pA_{ps}}$$


Si
$$ho_v <
ho_{vmin}$$

$$\beta = \frac{4.8}{1 + 750\varepsilon_s} \frac{1.3}{1 + \mathsf{s}_{xe}}$$

$$\mathbf{s}_{\mathsf{xe}} = \mathbf{s}_{\mathsf{x}} \frac{0.035}{\mathbf{a}_{\mathsf{g}} + 0.016}$$


 $0.30 \, \text{m} \le \text{s}_{\text{xe}} \le 2.0 \, \text{m}$


Efecto tamaño en vigas sin armadura de corte

Resistencia al corte proporcionada por la armadura de corte

$$V_n = V_c + V_s + V_p$$

Estribos cortados por una fisura

$$n = d_{v} \frac{\cot \theta + \cot \alpha}{s}$$

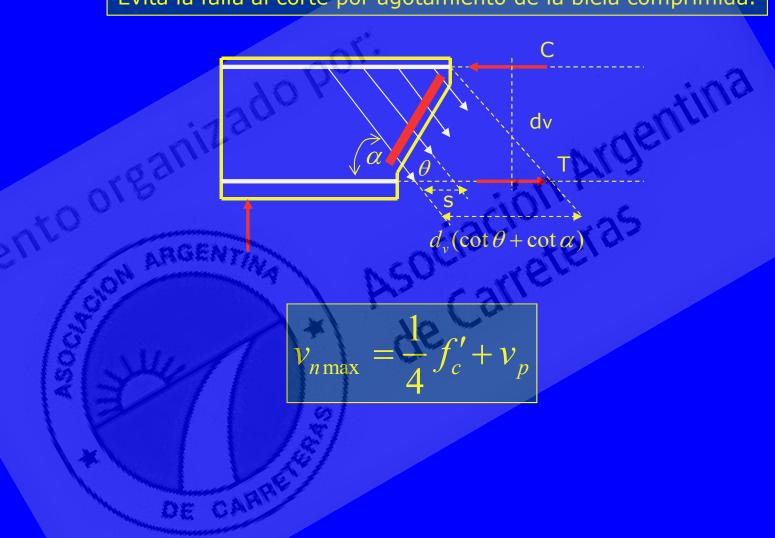
Equilibrio como cuerpo libre:

$$V_s = n A_v f_y \sin \alpha$$

$$\theta = 29^{\circ} + 3500 \varepsilon_s$$

$$V_s = A_v f_v \frac{d_v(\cot \theta + \cot \alpha) \sin \alpha}{s}$$

$$\alpha = 90^{\circ}$$


Estribos a 90°

$$\varepsilon_{s} = \frac{\frac{M_{u}}{d_{v}} + 0.5 N_{u} + (V_{u} - V_{p}) - A_{ps} f_{p0}}{E_{s} A_{s} + E_{p} A_{ps}}$$

$$V_{S} = \frac{A_{v} f_{y} \cot \theta \, d_{v}}{S}$$

Máxima tensión de corte

Evita la falla al corte por agotamiento de la biela comprimida.

Diseño de la armadura de corte según CIRSOC 802

Estribos a 90°

$$|v_u| \leq (v_c + v_s + v_p) \phi$$

$$v_s = \frac{A_v f_v \cot \theta}{b_v s} = \rho_v f_v \cot \theta$$

$$\rho_{v} = \frac{v_{u}}{\phi} - v_{c} - v_{p}$$

$$f_{y} \cot \theta$$

$$\rho_{v} = \frac{A_{v}}{b_{v} s}$$

Diámetro de los estribos:

Número de ramas:

$$n_r$$

Separación de estribos:

DE CARP

$$s = \frac{n_r \pi \frac{\phi_e^2}{4}}{\rho_v b_v}$$

Diseño de la armadura de corte Comparación ACI 318 – CIRSOC 802

Separación máxima de estribos

CIRSOC 802

$$s_{\text{max}} = \begin{cases} \min(0.8d_v, 60cm) & si \ v_u < 0.125f_c' \\ \min(0.4d_v, 30cm) & si \ v_u \ge 0.125f_c' \end{cases}$$

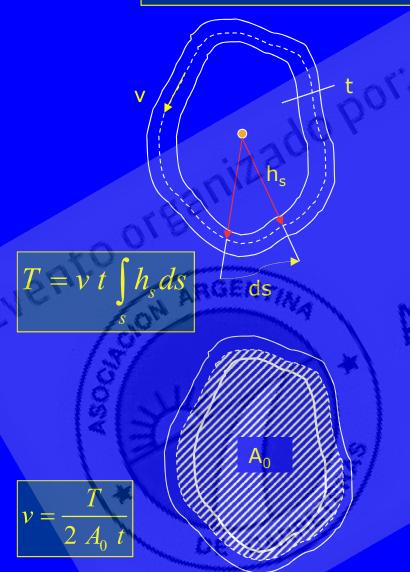
¿Por qué?

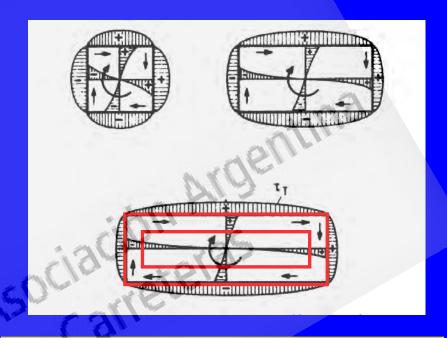
Cruzar la fisura con por lo menos un estribo.

Depende de

 θ

DE CARP

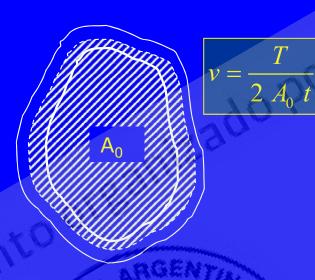


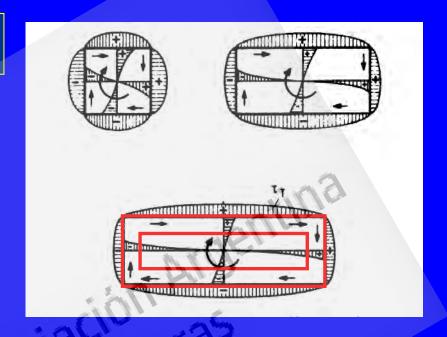

DE CARRE

Asociación Argentina de Carreteras

DIMENSIONAMIENTO A TORSION

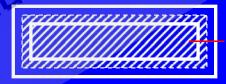
Torsión de Saint-Venant En Tubos de pared delgada


La mayor parte de la torsión es resistida por altas tensiones tangenciales en el perímetro de la sección.



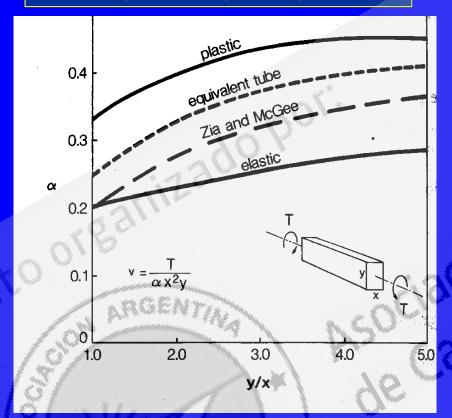
La verdadera sección es reemplazada por un tubo de pared delgada de la misma dimensión exterior.

Tensión de torsión de referencia


Torsión de Saint-Venant En Tubos de pared delgada

Tubo de pared delgada equivalente

 A_c = Area de la sección original P_c = Perímetro de la sección original


$$t_c = \frac{3 A_c}{4 p_c}$$

$$v = \frac{T}{2 A_0 t_c} = \frac{T p_c}{A_c^2}$$

Tensión de torsión de referencia

Momento torsor de fisuración

Tubo de pared delgada equivalente

Tensión de torsión de referencia

$$V = \frac{T p_c}{A_c^2}$$

Tensión de fisuración,

Momento torsor de fisuración,

$$V_{cr} = \frac{1}{3} \sqrt{f_c'} \sqrt{1 + \frac{f_{pc}}{\frac{1}{3} \sqrt{f_c'}}}$$

$$T_{cr} = \frac{1}{3} \sqrt{f_c'} \frac{A_c^2}{\rho_c} \sqrt{1 + \frac{f_{pc}}{\frac{1}{2} \sqrt{f_c'}}}$$

efecto del pretensado

DIMENSIONAMIENTO A TORSION

¿cuándo puedo despreciar el efecto de la torsión?

Tensión de fisuración,

DE CARP

$$v_{cr} = \frac{1}{3} \sqrt{f_c'} \sqrt{1 + \frac{f_{pc}}{\frac{1}{3} \sqrt{f_c'}}}$$

Momento torsor de fisuración,

$$T_{cr} = \frac{1}{3} \sqrt{f_c'} \frac{A_c^2}{p_c} \sqrt{1 + \frac{f_{pc}}{\frac{1}{3} \sqrt{f_c'}}}$$

Se podrá despreciar el efecto de la torsión cuando:

$$T_u \leq \frac{1}{4} \phi T_{cr}$$

DIMENSIONAMIENTO A LA TORSION

Analogía del tubo de pared delgada después de la fisuración:

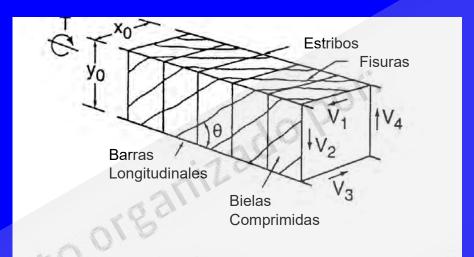
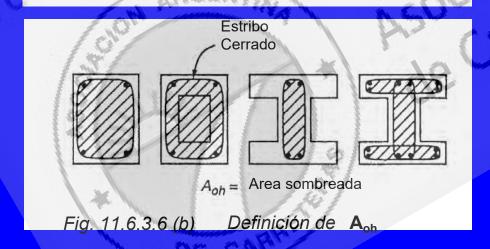
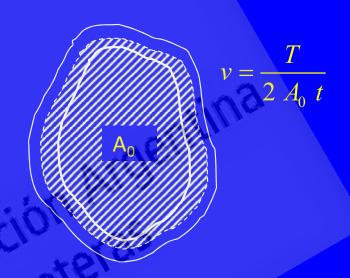
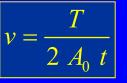
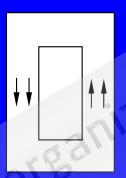




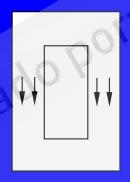
Fig. 11.6.3.6. (a) Analogía del reticulado espacia


P_h= perímetro de la línea de los estribos cerrados

$$t = \frac{A_0}{0.9 \, \rho_b}$$

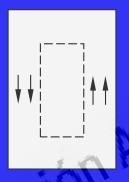

$$v = \frac{T}{2A_0t} = \frac{T}{2A_0} \frac{0.9 p_h}{A_0} = \frac{T \ 0.9 p_h}{2A_0^2}$$

Superposición de tensiones de corte y torsión


Secciones huecas

$$t = b_v$$

Tensiones de torsión



Tensiones de corte

$$V_T = V_T b_v d_v = \frac{T_u}{2A_0 b_v} b_v d_v = \frac{T_u}{2A_0} \frac{d_v}{A_0}$$

$$V_{ueq} = V_u + \frac{T_u}{2} \frac{d_s}{A_0}$$

Secciones macizas

Tensiones de torsión

Tensiones de corte

$$V_T = V_T A_0 = \frac{T_u \ 0.9 \ p_h}{2 A_0}$$

$$V_{ueq} = \sqrt{V_u^2 + \left(\frac{T_u}{2} \frac{0.9 \, p_h}{A_0}\right)^2}$$

CORTE EQUIVALENTE

Verifica la biela comprimida

Determina θ

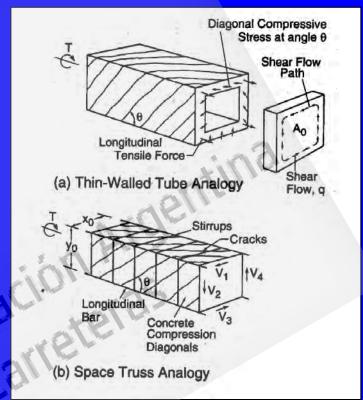
Diseño de la armadura de torsión según CIRSOC 802- ESTRIBOS

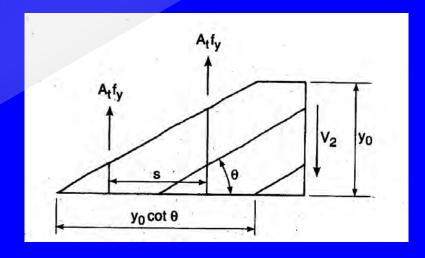
$$|\phi T_n| \geq T_u$$

$$T_c = 0$$

$$v = \frac{T}{2 A_0 t}$$

Analogía del reticulado espacial


Estribos


$$V_2 = v t y_0 = \frac{T}{2A_0} y_0 \qquad n = \frac{y_0 \cot \theta}{s}$$

$$V_2 = nA_t f_{yv} = \frac{A_t f_{yv} y_0}{s} \cot \theta$$

$$T_n = \frac{2A_o A_t f_{yy}}{S} \cot \theta$$

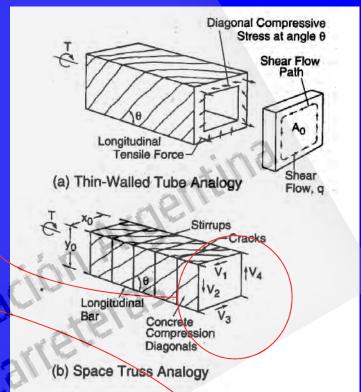
Note que A_t es el area de una sola rama de un estribo cerrado.

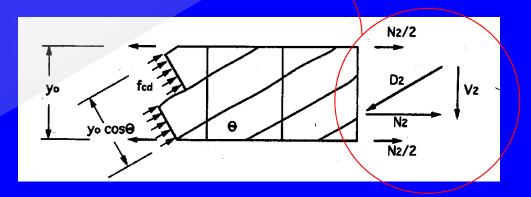
Diseño de la armadura de torsión según CIRSOC 802– ARMADURA LONGITUDINAL

Analogía del reticulado espacial

Armadura longitudinal

$$V_1 = \frac{T}{2A_0} x_0 \qquad V_2 = \frac{T}{2A_0} y_0$$


$$N_2 = V_2 \cot \theta$$

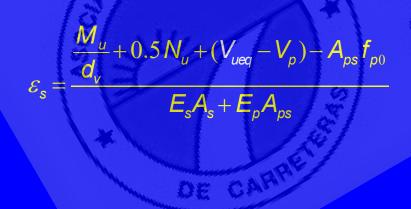

$$N = 2(N_1 + N_2)$$

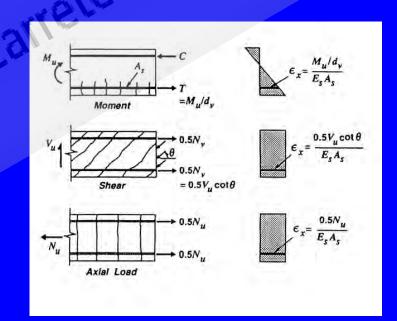
$$N = 2 \frac{T_n}{2A_0} (x_0 + y_0) \cot \theta$$

$$N = A_l f_{vl}$$

$$A_l = \frac{T_n p_h}{2A_0 f_{yl}} \cot \theta$$

Diseño de la armadura de torsión según CIRSOC 802

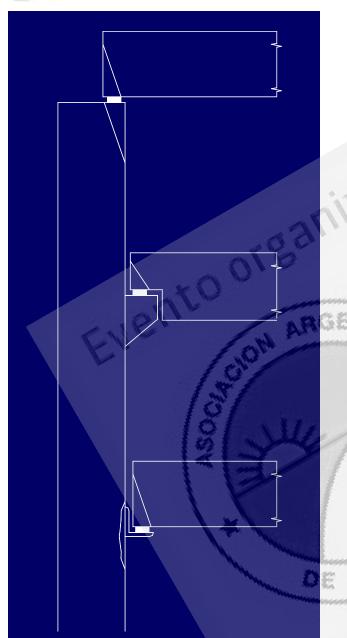

Estribos


$A_{t} = \frac{T_{u}/s}{2A_{0}f_{w}\cot\theta}$

Armadura longitudinal

$$A_{l} = \frac{T_{u}/p_{h}}{2A_{0}f_{yl}}\cot\theta$$

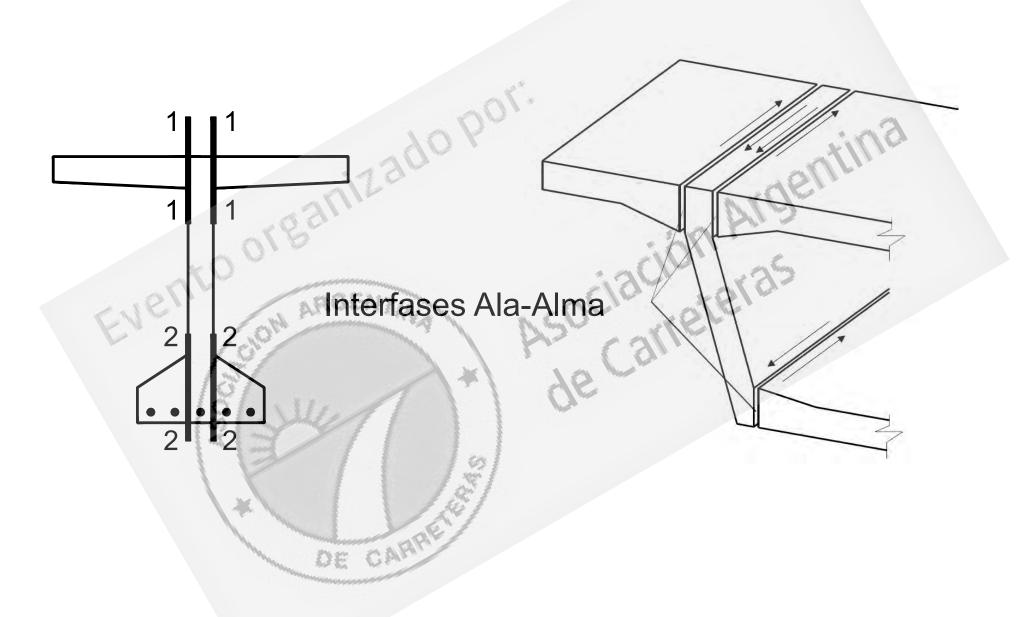
$$\theta = 29^{\circ} + 3500 \,\varepsilon_{\rm s}$$



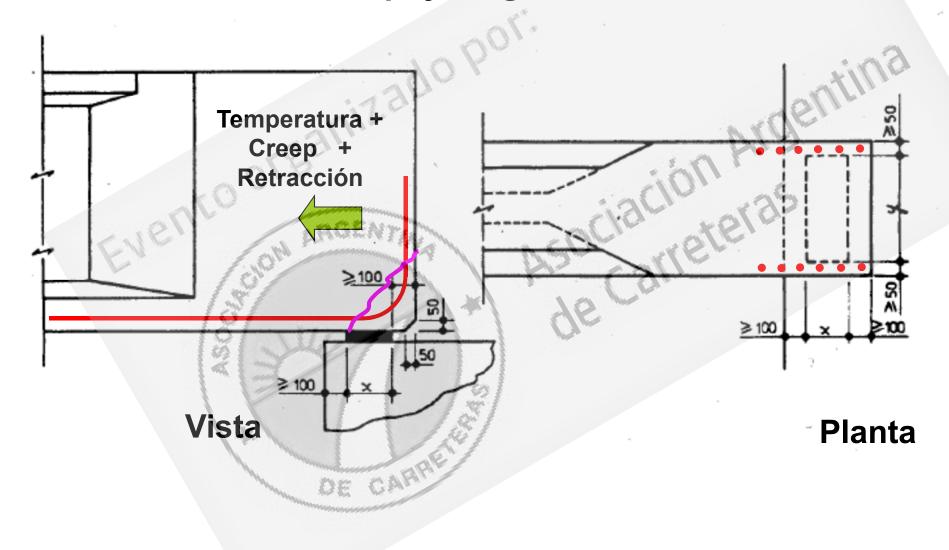
CIRSOC SERIE 800 - CORTE POR FRICCIÓN

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

TRANSFERENCIA DE CORTE EN LAS INTERFASES CORTE POR FRICCIÓN

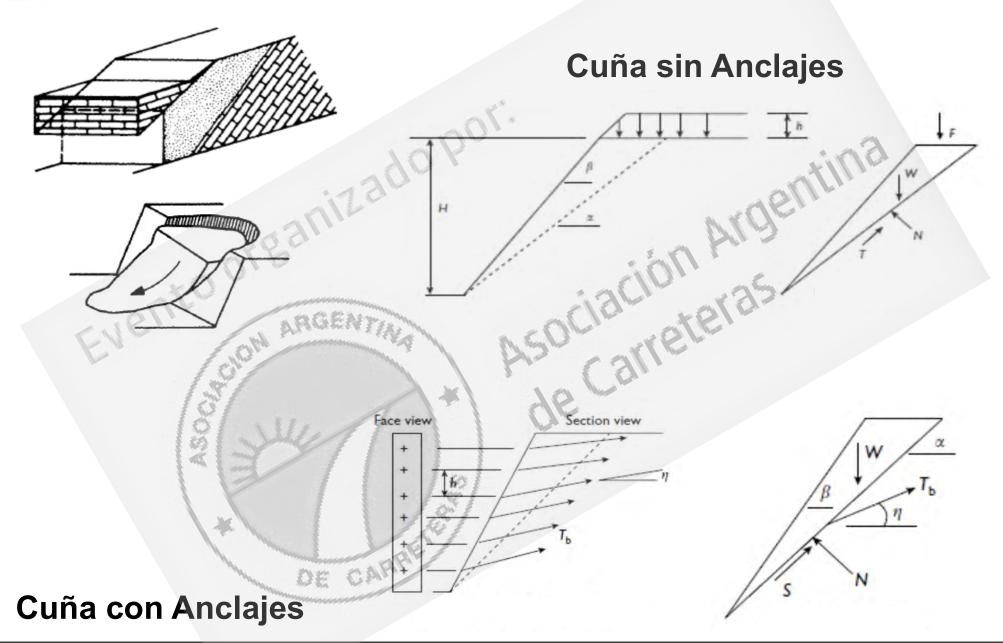


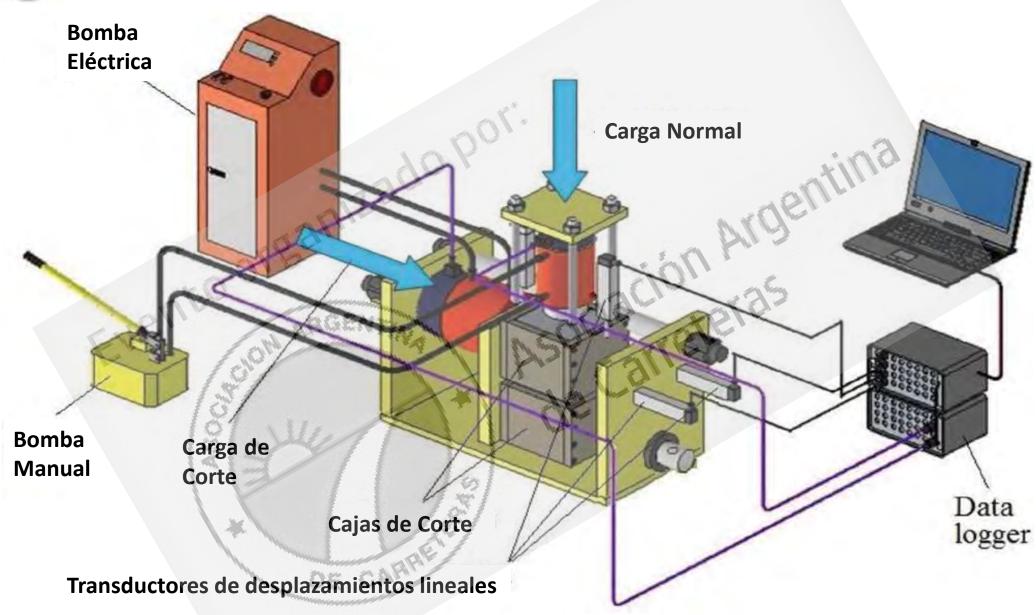
Investigación de la resistencia y seguridad de interfases

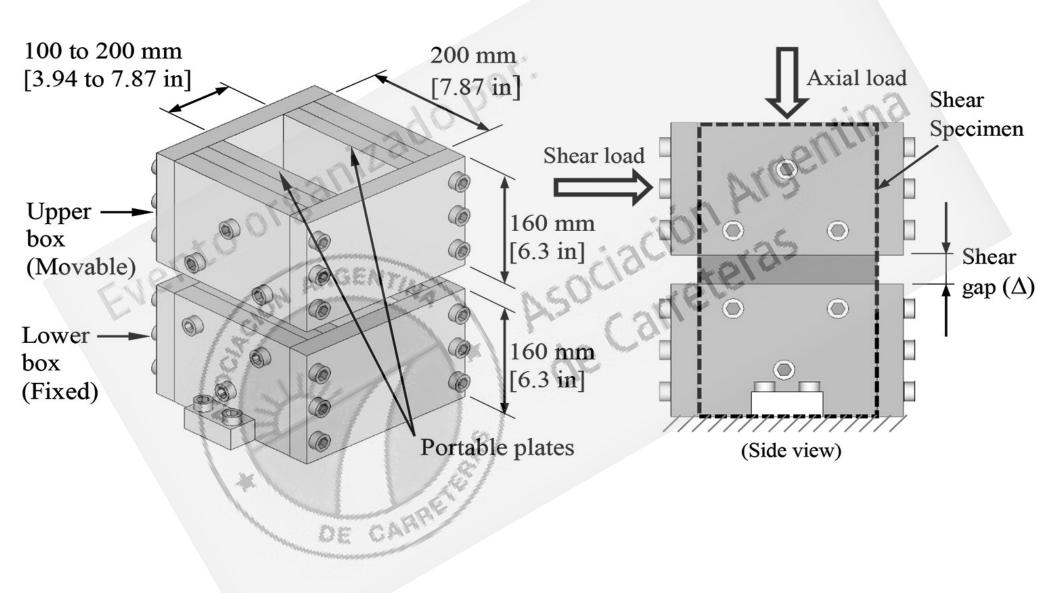

- Fisuras Reales o Potenciales
- Hormigonado en diferentes etapas

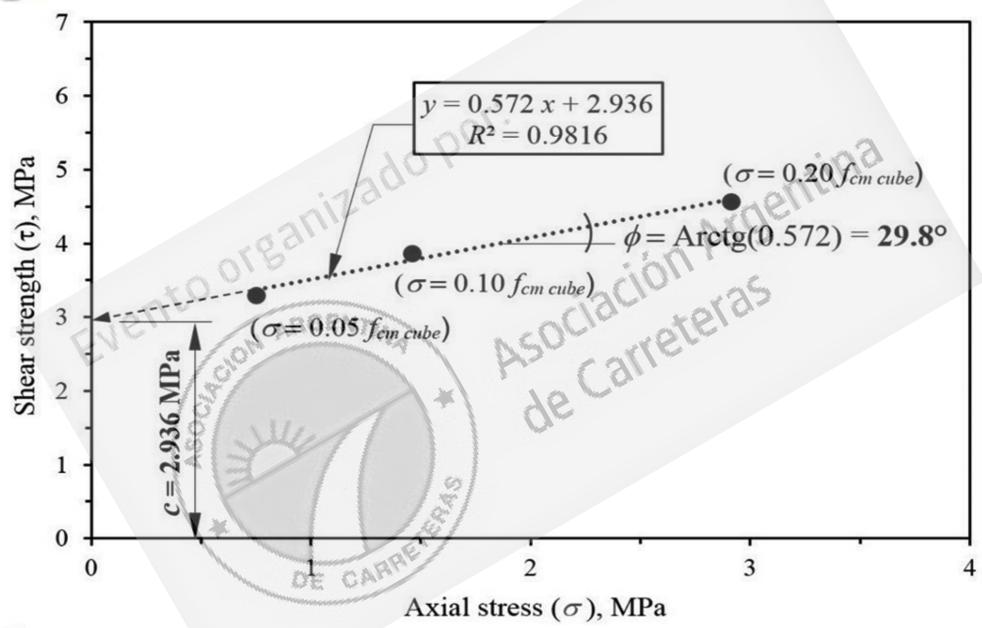


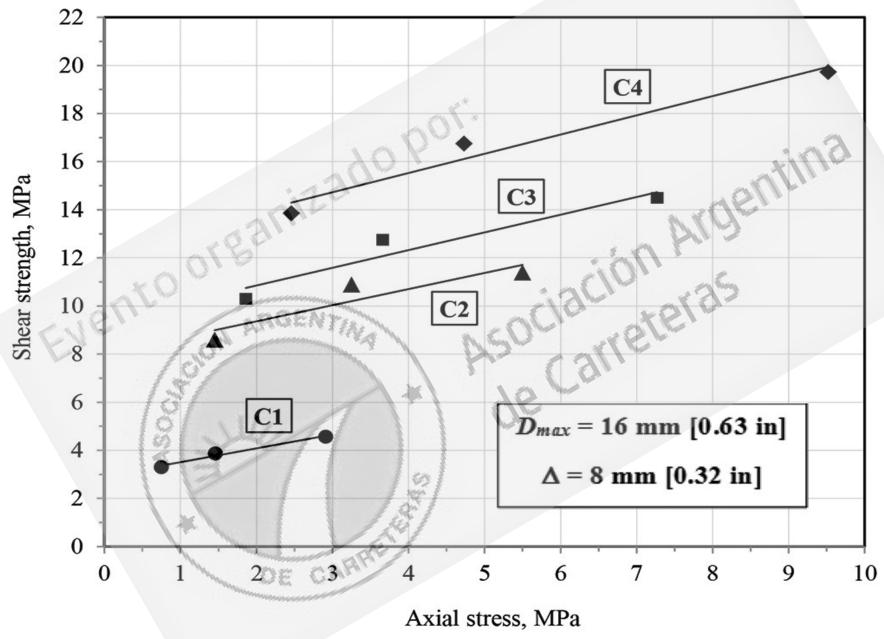
Apoyo Viga de Puente

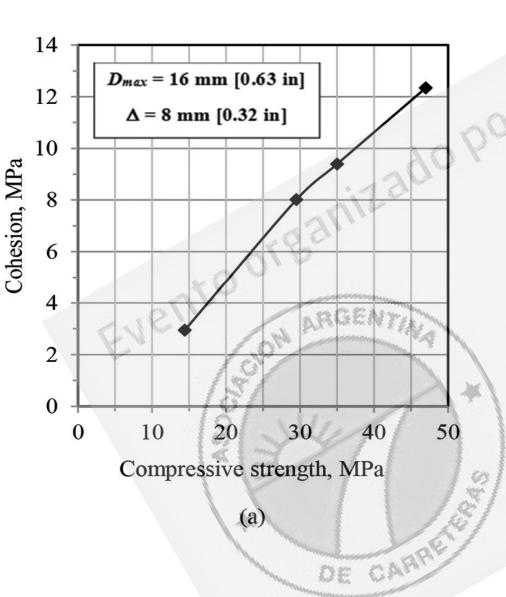


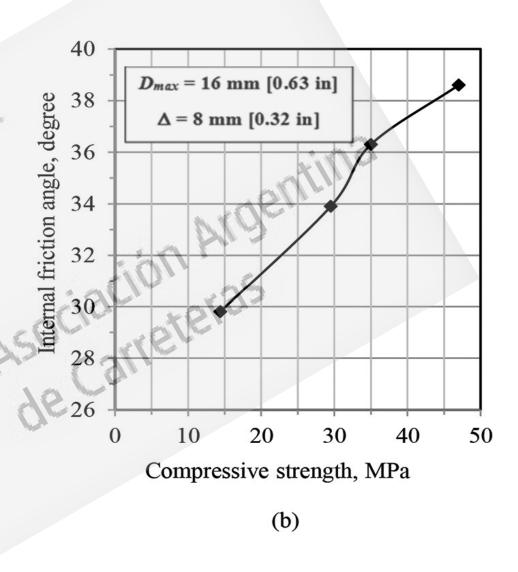

ANTE LA IMPLEMENTACIÓN DE UN NUEVO REGLAMENTO DE PUENTES: CIRSOC SERIE 800



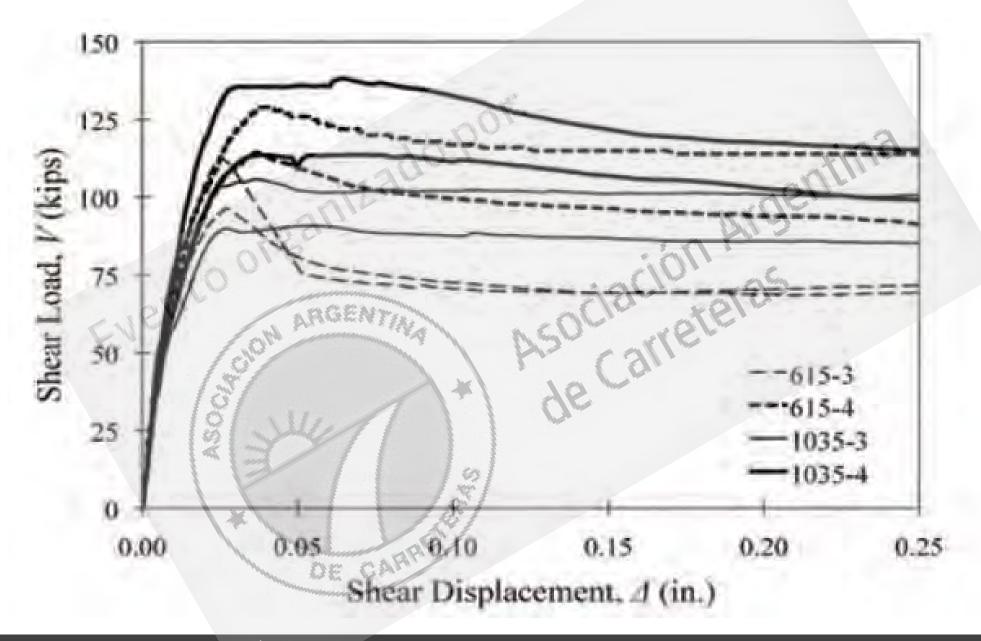




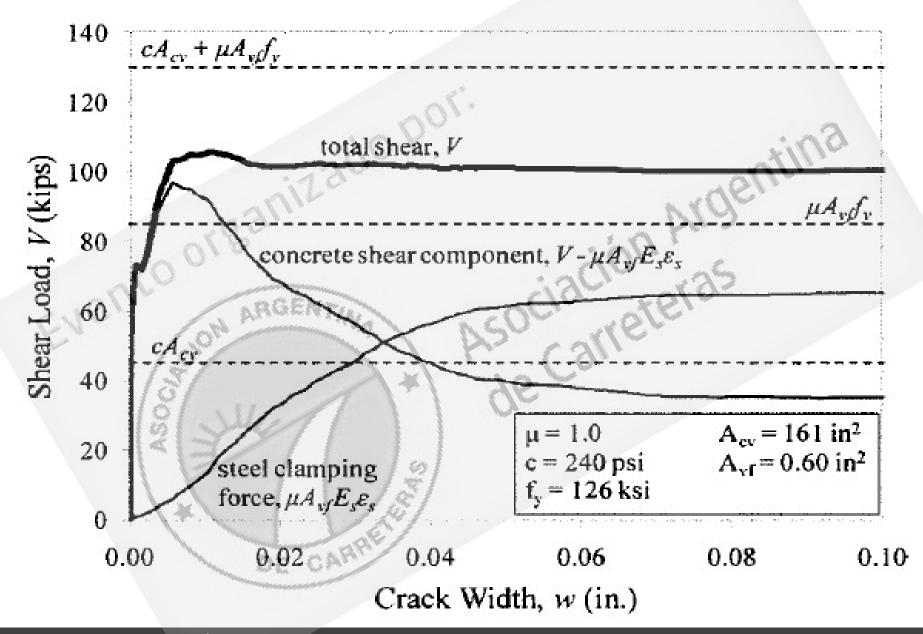




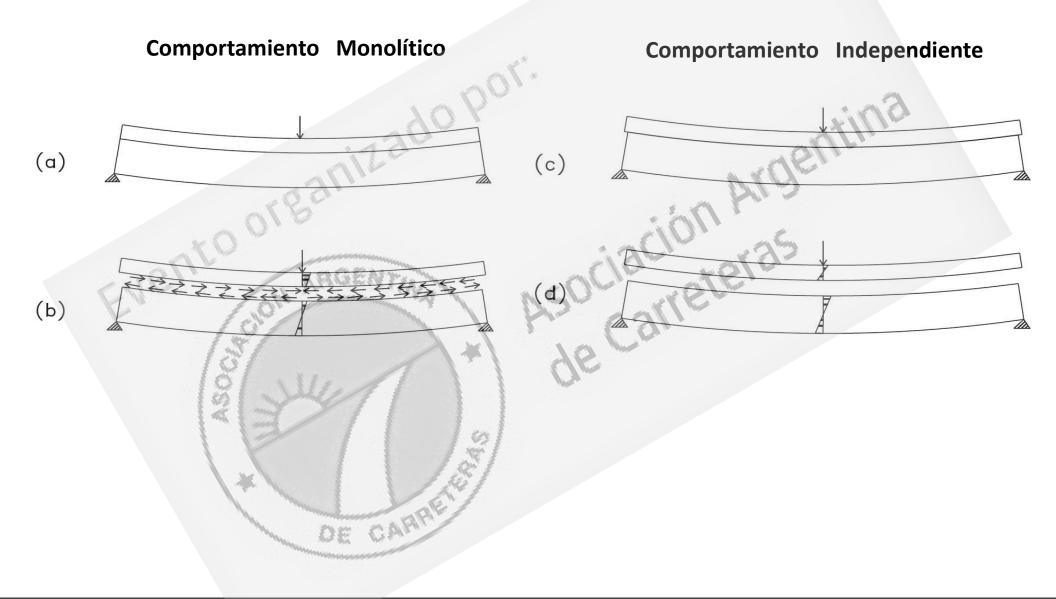




(a) 615-3B at a slip exceeding 1 in.
 (∆ can be seen as displaced horizontal lines representing interface reinforcement locations.)



(b) distortion of the interface steel reinforcement of Specimen 1035-3A following large slip and cover spalling.



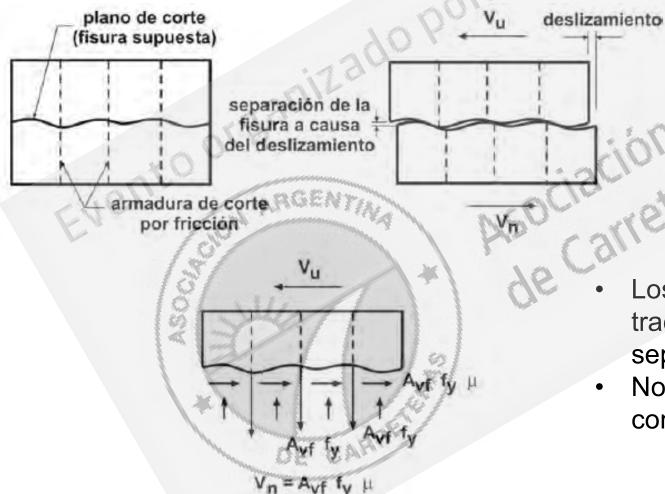
ANTE LA IMPLEMENTACIÓN DE UN NUEVO REGLAMENTO DE PUENTES: CIRSOC SERIE 800

CAPÍTULO 11. CORTE Y TORSIÓN 11.7. CORTE POR FRICCIÓN

CAPÍTULO 17. ELEMENTOS DE HORMIGÓN, CONSTRUIDOS EN ETAPAS, SOLICITADOS A FLEXIÓN

El formato general de seguridad es:

$$Vu \le \phi Vn = 0.75 Vn$$



CAPÍTULO 11. CORTE Y TORSIÓN 11.7. CORTE POR FRICCIÓN

- En 1960 A.R. Anderson introdujo el concepto de "corte por fricción"
- Desarrollo en detalle por Mast y Birkeland y Birkeland
- El ACI 318 incorporó el modelo de corte por fricción en 1977
- El modelo parte de suponer la existencia de una fisura
- · La fisura presenta una cierta rugosidad
- Por efecto del desplazamiento relativo originado por el corte, provoca una apertura que llega a poner a la armadura en fluencia creando una compresión normal a la fisura
- Se genera una fricción igual al producto de la citada compresión por el coeficiente de fricción "μ"
- La fricción generada equilibra el esfuerzo de corte que actúa sobre la fisura

CAPÍTULO 11. CORTE Y TORSIÓN 11.7. CORTE POR FRICCIÓN

$Vn = Avf fy \mu$

Pero no mayor que el menor entre

- 0,2 f'c Ac
- 5,5 Ac

fy ≤ 420 MPa

- Los esfuerzos normales de tracción deben resistirse separadamente.
- No se dice nada sobre las compresiones

$Vn = Avf fy \mu$

CAPÍTULO 11. CORTE Y TORSIÓN 11.7. CORTE POR FRICCIÓN

Tipo de hormigón	μ
Hormigón colocado monolíticamente	1,4 λ
Hormigón colocado sobre hormigón endurecido con la superficie intencionalmente rugosa como se especifica en el artículo 11.7.9.	1,0 λ
Hormigón colocado sobre hormigón endurecido con la superficie no intencionalmente rugosa	0,6 λ
Hormigón anclado a placas o perfiles de acero estructural, mediante pasadores con cabeza, o barras de armadura (ver el artículo 11.7.10.)	0,7 λ
aiondh.	

siendo:

 $\lambda = 1.0$ para hormigón de densidad normal

Hasta tanto entre en vigencia legal el Reglamento CIRSOC 202-2007: "Reglamento Argentino de Estructuras de Hormigón Ejecutado con Agregados Livianos" se deberán utilizar los siguientes valores de λ:

 $\lambda = 0.85$ para hormigones livianos con arena de densidad normal, y

 $\lambda = 0.75$ para hormigones con todos sus componentes livianos.

Se podrá interpolar linealmente cuando se utilice reemplazo parcial de arena.

CAPÍTULO 11. CORTE Y TORSIÓN
11.7. CORTE POR FRICCIÓN (Comentarios)

En los comentarios se presenta la siguiente expresión alternativa cuando se trabaja con una superficie rugosa:

 $V_n = 2.8 \text{ Ac} + 0.8 \text{ Avf fy}$ con Avf fy / Ac $\ge 1.4 \text{ MPa}$

Con Ac: Área de contacto

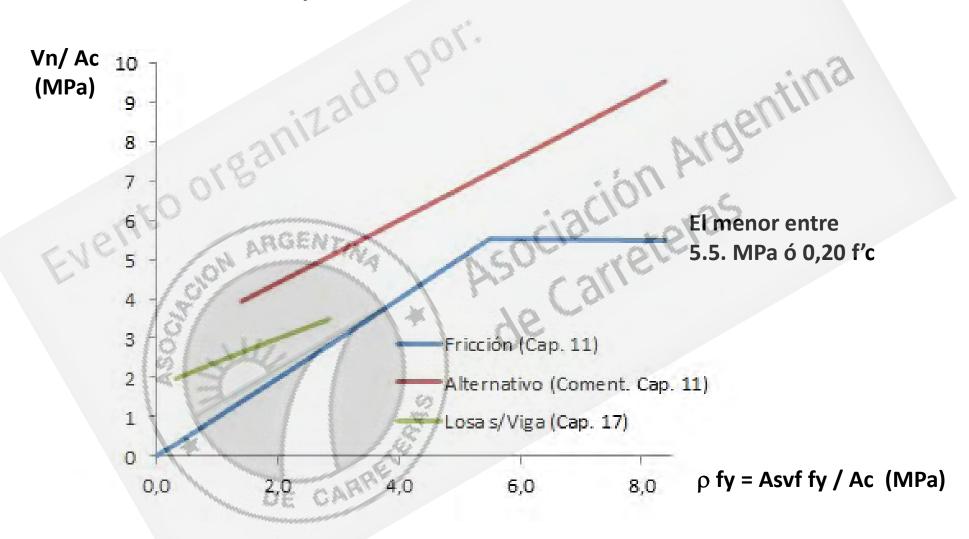
CARR

CAPÍTULO 17. ELEMENTOS DE HORMIGÓN, CONSTRUIDOS EN ETAPAS, SOLICITADOS A FLEXIÓN

CARR

Para superficies intencionalmente rugosas:

- Sin armaduras:
 - Vn = 0.6 Ac
- Con armaduras:


$$Vn = (1.8 + 0.6 \text{ pv fy}) \text{ Ac } \leq 3.5 \text{ Ac } (*)$$

(*) Si el valor no es suficiente como para resistir la solicitación exterior, hay que recurrir a las expresiones de corte por fricción

RESUMEN CAPÍTULOS 11 y 17

CIRSOC 802

5.8.4. Transferencia de Corte en las Interfases – Corte por Fricción

Es de aplicación en:

- Una fisura existente o potencial
- Una interfaz entre diferentes materiales

ARGENTS

OE CARE

- Una interfaz entre dos hormigones colados en diferentes momentos
- La interfaz entre diferentes elementos de la sección transversal

CIRSOC 802

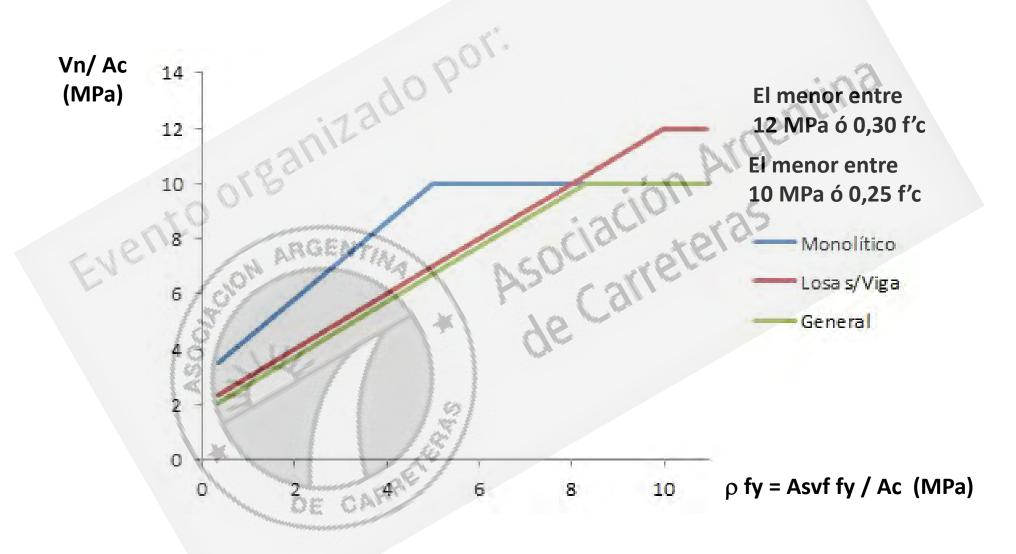
5.8.4. Transferencia de Corte en las Interfases – Corte por Fricción

$$V_{ni} = 1000 \text{ c } A_{cv} + \mu (1000 A_{vf} f_y + P_c)$$

(5.8.4.1-3)

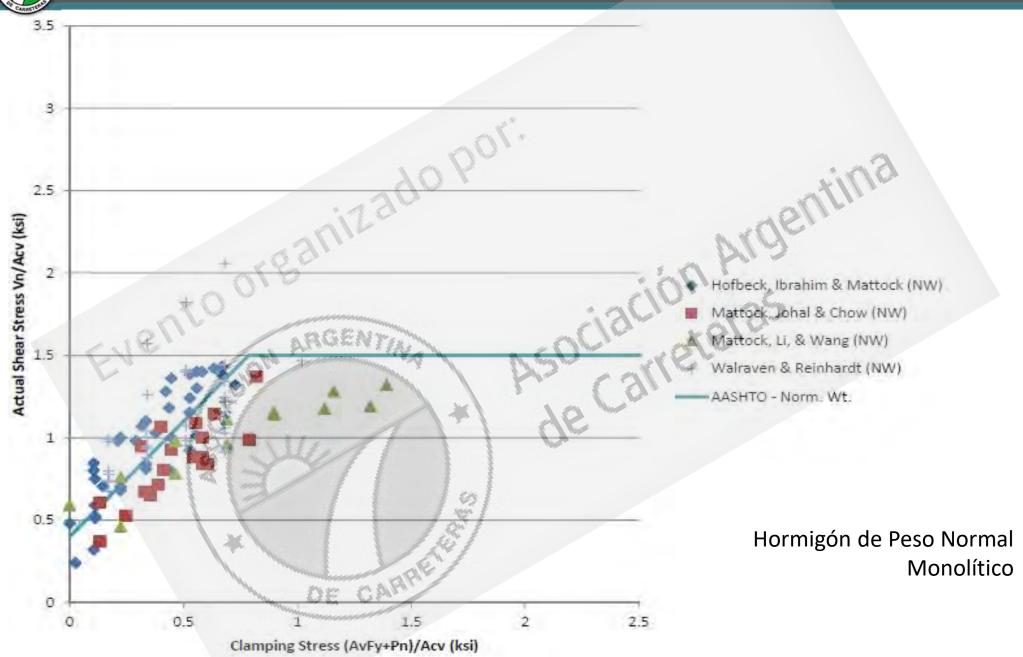
Pero siempre menor que el menor valor entre (5.8.4.1-4 y 5)

$$V_{ni} = 1000 \text{ K}_1 \text{ f'}_c \text{ A}_{cv}$$
 y $V_{ni} = 1000 \text{ K}_2 \text{ A}_{cv}$

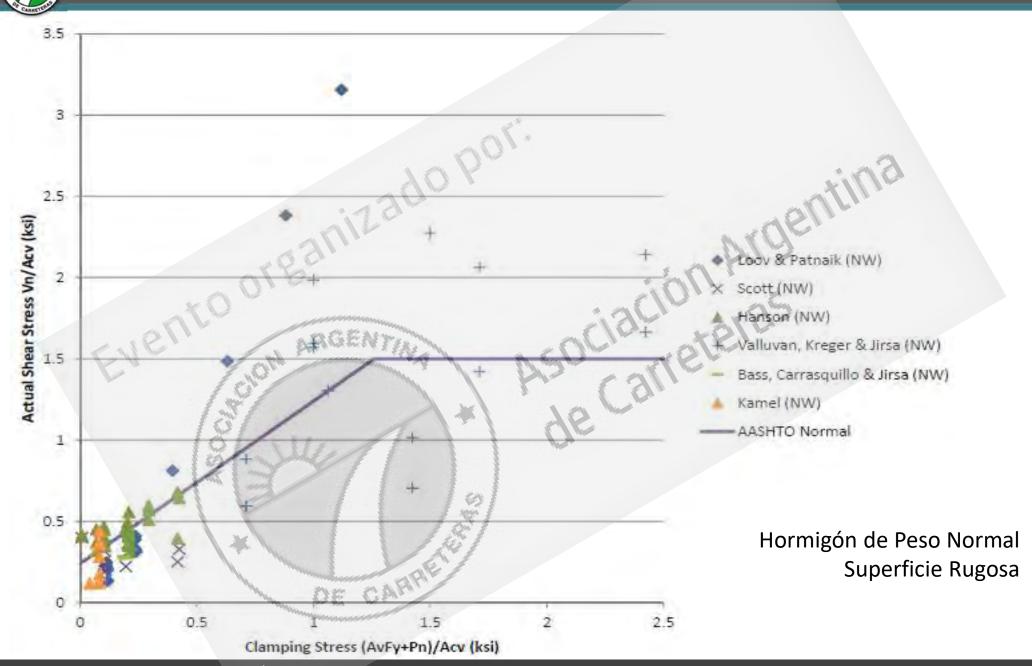

P_c = fuerza normal de compresión (si es de tracción se calcula la armadura aparte y se suma)

City Co	(MPa)	μ	K ₁	K ₁
Hormigón Monolítico	3,0	1,4	0,25	10
Losa s/Viga – Rugosidad 6 mm	2,0	1,0	0,30	12
Caso General – Rugosidad 6 mm	1,7	1,0	0,25	10

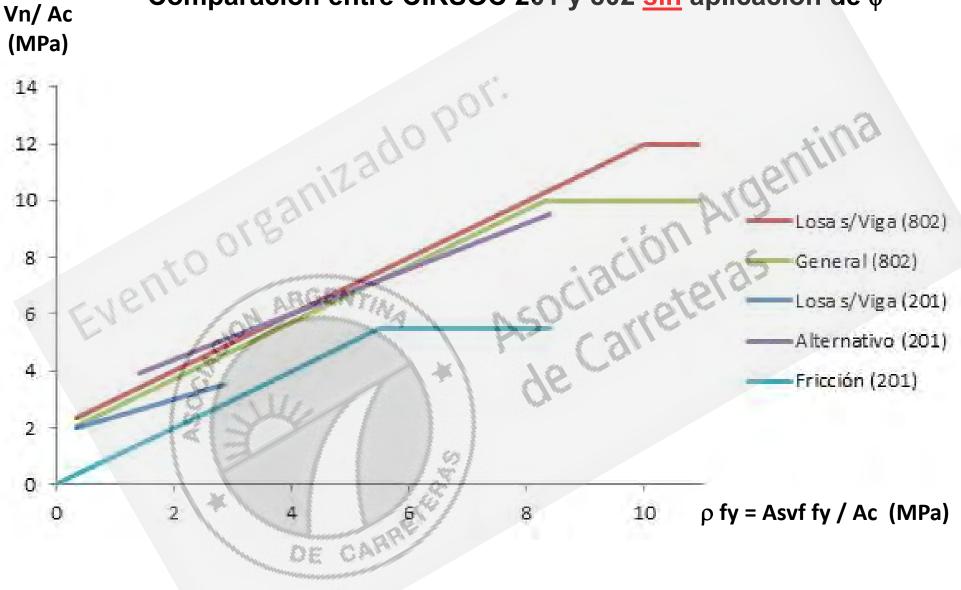
El formato general de seguridad es: $Vu \le \phi Vn = 0.90 Vn$

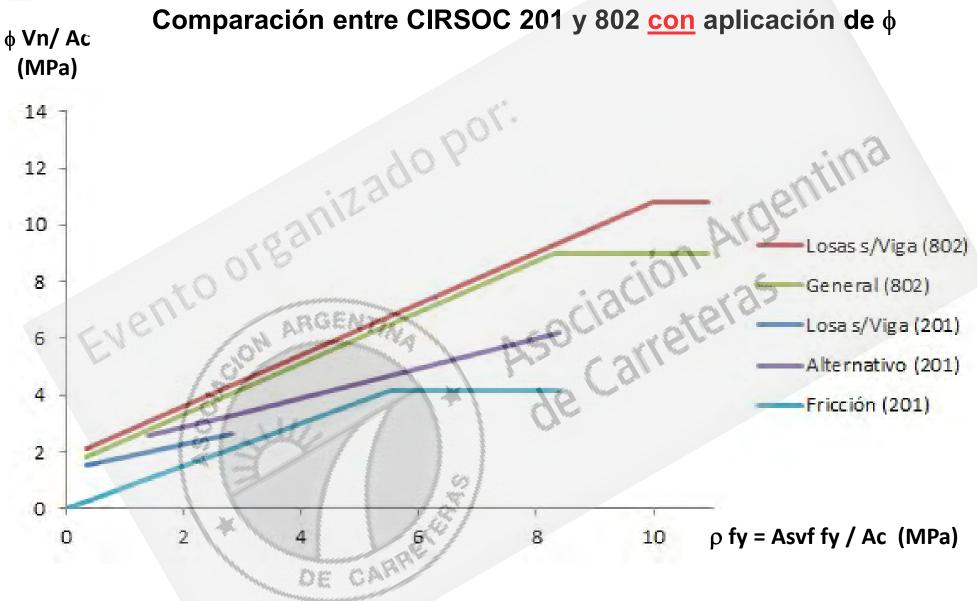


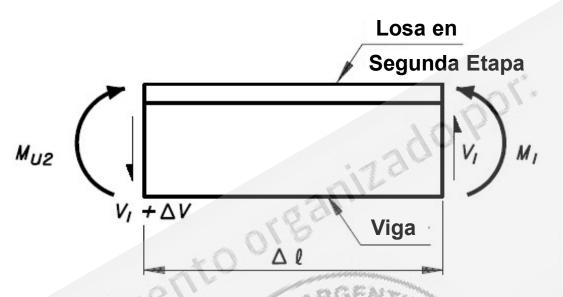
CIRSOC 802



ANTE LA IMPLEMENTACIÓN DE UN NUEVO REGLAMENTO DE PUENTES: CIRSOC SERIE 800







 C_{U2}

 T_{U2}

DE CAR

Método Aproximado para calcular el corte horizontal

Se supone que en estado límite último el eje neutro cae en la losa

$$M_{u2} = M_1 + V_1 \Delta 1$$

$$C_{u2} = \frac{M_{u2}}{d_v}$$

$$C_{u2} = \frac{M_1}{d_v} + \frac{V_1 \Delta 1}{d_v}$$

$$C_1 = \frac{M_1}{d_v}$$

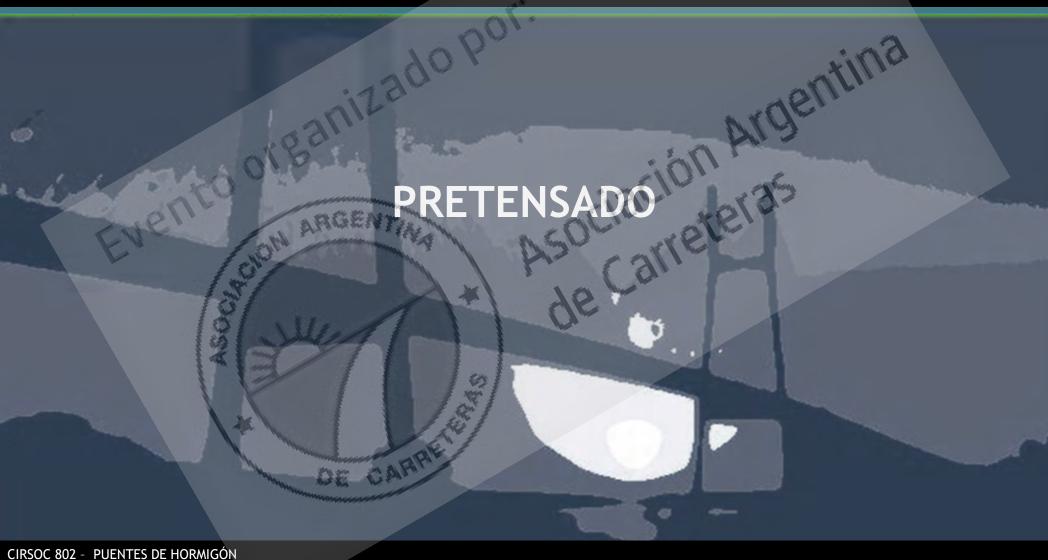
$$V_h = C_{u2} - C_1$$

$$V_h = \frac{V_1 \Delta 1}{d_v}$$

Por unidad de longitud:

$$V_{hi} = \frac{V_1}{d_v}$$

Armadura Mínima en las Interfases Viga - Losa


$$A_{vf} \ge \frac{0.345 \times A_{cv}}{f_y}$$

- La armadura mínima puede ser menor a la anterior si se disponen al menos 4/3 de la armadura calculada
- La armadura mínima se puede obviar si se introduce una rugosidad de 6 mm de amplitud, si la tensión solicitante de corte es menor que 1.5 MPa y si la armadura de corte vertical de la viga se prolonga y se ancla adecuadamente en la losa

DE CAR

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

5.4 - Materiales

- 5.4.2. Hormigón
 - 5.4.2.1 f'c La resistencia a la compresión especificada para el hormigón pretensado y los tableros no deberá ser menor que 30 Mpa
 - 5.4.2.2 a 5.4.2.7 Coeficiente de Expansión Térmica, Contracción y Fluencia Lenta, Módulo de Elasticidad, Coeficiente de Poisson, Módulo de Rotura y Resistencia a la Tracción

5.4.4 Acero de Pretensado

Los cordones de siete alambres no recubiertos, aliviados de tensiones o de baja relajación, o las barras de alta resistencia lisas o conformadas no recubiertas, deberán satisfacer las siguientes normas para materiales, según lo especificado en AASHTO LRFD Bridge Construction Specifications, hasta tanto el INTI-CIRSOC o un ente específico de aplicación (p.e. una Dirección de Vialidad) desarrolle un documento al respecto:

•AASHTO M 203/M 203M (ASTM A416/A416M), o bien

Tabla 5 4 4 1-1 - Propiedades de los cordones y barras de pretensado

•AASHTO M 275/M 275M (ASTM A722/A722M).

Material	Grado o Tipo	Diámetro [m]	Resistencia a la tracción, f _{pu} [MPa]	Tensión de fluencia, f _{py} [MPa]
1	1725 MPa	0,006 à 0,0152	1725	85% de f _{pu} , excepto 90% de f _{pu} para
Cordones 1865 MPa	0,0095 a 0,0152	1865	cordones de baja relajación	
Parras	Tipo 1, Lisas	0,019 a 0,0349	1035	85% de f _{pu}
Barras Tipo 2, Conforma	Tipo 2, Conformadas	0,0159 a 0,0349	1035	80% de f _{pu}

5.4.4 Acero de Pretensado

DE CARP

Módulo de Elasticidad:

para cordones:

Ep = 196500 Mpa

para barras:

Ep = 206850 MPa

• 5.4.5 Anclajes

Los anclajes y dispositivos de acoplamiento para cables de postesado deberán satisfacer los requisitos del Artículo 10.3.2 de la norma AASHTO LRFD Bridge Construction Specifications, hasta tanto el INTI-CIRSOC o un ente específico de aplicación (p.e. una Dirección de Vialidad) desarrolle un documento al respecto.

• 5.4.6 Vainas

- Rígidas o semirrígidas, de metal ferroso galvanizado o polietileno
- Radios de curvatura límites según el material
- El máximo intervalo entre apoyos de las vainas durante la construcción deberá estar indicado en las especificaciones técnicas y deberá satisfacer los requisitos del Artículo 10.4.1.1 de la norma AASHTO LRFD Bridge Construction Specifications, hasta tanto el INTI-CIRSOC o un ente específico de aplicación (p.e. una Dirección de Vialidad) desarrolle un documento al respecto.
- Tamaño de las vainas:
 - $\Phi \geq 6 \text{ mm} + \Phi$ nominal del cable de 1 solo cordón o barra
 - Area interior de la vaina ≥ 2 x Area neta del acero pretensado (múltiples cordones o barras)
 - Area interior de la vaina ≥ 2,5 x Area neta del acero pretensado (múltiples cordones o barras) con enhebrado posterior

5.4 - Materiales

- 5.4.6 <u>Vainas</u>
 - Tamaño de las vainas:
 - • 40% del menor espesor de hormigón en correspondencia con la vaina

DE CARP

Para una vaina de 70 mm el espesor del alma da aproximadamente 18 cm.

5.9 - Pretensado

- Consideraciones Generales
 - Resistencias
 - Propiedades de la sección.
 - Fisuración
- Límites tensionales
 - Acero
 - Hormigón
- Pérdidas
 - Instantáneas
 - Diferidas
 - Estimación aproximada
 - Estimaciones refinadas

Requisitos generales

- Aplicables a elementos de Hormigón Estructural armados con cualquier combinación de cables de pretensado y barras de armadura
- Se deberán diseñar tanto para la fuerza de pretensado inicial como para la fuerza de pretensado final.
- Se deberán satisfacer los requisitos en los estados límite de servicio, fatiga, resistencia y evento extremo
- Se pueden utilizar cables o barras de armadura no tesados en combinación con cables tesados.
- Los límites para las tensiones de compresión, especificados en el Artículo 5.9.4, se deberán utilizar para cualquier combinación de cargas de servicio aplicable de la Tabla 3.4.1-1.
- La Combinación de Cargas para Estado Límite de Servicio III, no se aplicará a la investigación de la compresión.
- Los límites para las tensiones de tracción, especificados en el Artículo 5.9.4, se deberán utilizar para cualquier combinación de cargas de servicio aplicable de la Tabla 3.4.1-1.
- La Combinación de Cargas para Estado Límite de Servicio III se deberá aplicar al investigar la tracción bajo sobrecarga.

Resistencias especificadas del Hormigón

f ´c = resistencia a la compresión especificada del hormigón a utilizar en el diseño [Mpa]

f ci = resistencia a la compresión especificada del hormigón en el momento de la carga inicial o pretensado [MPa]; resistencia nominal a la compresión del hormigón en el momento de aplicar fuerza a los cables [MPa] (5.4.2.3.2) (5.10.9.7.2). Esta resistencia deberá ser la adecuada para satisfacer los requisitos de los anclajes o de transferencia por adherencia, así como para satisfacer los requisitos de flecha o contraflecha.

Propiedades de las Secciones

Para determinar las propiedades de las secciones antes de la adherencia de los cables de postesado, se deberán considerar los efectos de la pérdida de área debida a la presencia de vainas abiertas.

Luego de la adherencia de los cables, tanto para elementos pretesados como para elementos postesados, las propiedades de las secciones se pueden basar ya sea en la sección bruta o en la sección transformada.

Fisuración

La fisuración bajo cargas de servicio, el ancho de fisura, la fatiga de la armadura y la corrosión se deberán investigar de acuerdo con los requisitos los Artículos 5.5, 5.6 y 5.7.

5.9.2 - Tensiones debidas a deformaciones impuestas

Se deberá investigar cómo las deformaciones elásticas e inelásticas provocadas por el pretensado afectan a los elementos contiguos de la estructura. Las fuerzas de restricción producidas en los elementos estructurales contiguos se pueden reducir por los efectos de la fluencia lenta.

5.9.3 – Límites de Tensiones en el Acero

La tensión en los cables debida al pretensado o en el estado límite de servicio no deberá ser mayor que los siguientes valores:

- Los valores especificados en la Tabla 5.9.3-1, o
- Los valores recomendados por el fabricante de los cables o anclajes.

La tensión en los cables en los estados límite de resistencia y evento extremo no deberá ser mayor que el límite de resistencia a la tracción especificado en la Tabla 5.4.4.1-1.

5.9.3 – Límites de Tensiones en el Acero

Tabla 5.9.3-1 – Limites de tensión para los cables de pretensado

	Tipo de Cable		
Condición	Cordones aliviados de tensiones y barras lisas de alta resistencia	Cordones de baja relajación	Barras de alta resistencia conformadas
Pretesad	0		
Inmediatamente antes de la transferencia (f _{pbt})	0,70 f _{pu}	0,75 fpu	140
En estado límite de servicio después de todas las pérdidas (f _{pe})	0,80 f _{py}	0,80 f _{py}	0,80 f _{py}
Postesad	lo	3612	175
Antes del acuñamiento, se puede permitir f _{pbt} a corto plazo	0,90 f _{py}	0,90 f _{py}	0,90 f _{py}
En anclajes y acoplamientos inmediatamente después del acuñamiento de los anclajes	0,70 f _{pu}	0,70 f _{pu}	0,70 f _{pu}
En otras secciones del elemento alejadas de los anclajes y acoplamientos inmediatamente después del acuñamiento de los anclajes	0,70 f _{pu}	0,74 f _{pu}	0,70 f _{pu}
En estado límite de servicio después de las pérdidas (fpe)	0,80 f _{pv}	0,80 f _{pv}	0,80 f _{py}

 0.90β s / 0.75β z

 0.85β s / 0.70β z

La tensión en los cables en los estados límite de resistencia y evento extremo no deberá ser mayor que el límite de resistencia a la tracción especificado en la Tabla 5.4.4.1-1.

5.9.3 – Límites de Tensiones en el Hormigón

5.9.4.1. Tensiones Temporarias antes de las Pérdidas 5.9.4.1.1. Tensiones de Compresión

5.9.4 Límite tensional

5.9.4.2. Tensiones en Estado Límite de Servicio después de las Pérdidas

DE CARP

5.9.4.1.2. Tensiones de Tracción (Tabla 5.9.4.1.2-1)

5.9.4.2.1. Tensiones de Compresión (5.9.4.2.1-1)

5.9.4.2.2. Tensiones de Tracción (5.9.4.2.2-1)

5.9.3 – Límites de Tensiones en el Hormigón

5.9.4.1.1. Tensiones de Compresión antes de las pérdidas

Asociación Argentini He Carreteras Tensión Límite

5.9.3 - Límites de Tensiones en el Hormigón

5.9.4.1.2. Tensiones de Tracción antes de las pérdidas

Tabla 5.9.4.1.2-1 – Límites para la tensión de tracción temporaria en el hormigón antes de las pérdidas – Elementos totalmente pretensados

Tipo de puente	Ubicación	Tensión límite
anto	En la zona de tracción precomprimida sin armadura adherente	N/A
Todos los	En áreas fuera de la zona de tracción precomprimida y sin armadura auxiliar adherente	$0.25 \sqrt{f_{ci}} \le 1.38$ [MPa]
puentes, excepto los puentes construidos por dovelas	 En áreas con armadura adherente (barras de armadura o acero de pretensado) suficiente para resistir la fuerza de tracción en el hormigón calculada suponiendo una sección no fisurada, cuando la armadura se dimensiona utilizando una tensión de 0,5·f_y, no mayor que 207 MPa 	0,63 √f oi [MPa]
	Para tensiones de manipulación en pilotes pretensados	$0,415 \sqrt{f'_{ci}} \text{ [MPa]}$

5.9.3 – Límites de Tensiones en el Hormigón

5.9.4.1.2. Tensiones de Compresión después de las pérdidas

Tabla 5.9.4.2.1-1 – Límites para la tensión de compresión en el hormigón pretensado en estado límite de servicio después de las pérdidas – Elementos totalmente pretensados

Ubicación	Tensión Límite
 Excepto en puentes construidos por dovelas, tensión debida a la sumatoria de la tensión efectiva de pretensado y las cargas permanentes 	0,45 f [MPa]
 En puentes construidos por dovelas, tensión debida a la sumatoria de la tensión efectiva de pretensado y las cargas permanentes 	0,45 f'c [MPa]
 Tensión debida a la sumatoria de las tensiones efectivas de pretensado, las cargas permanentes y las cargas transitorias, como así también durante las operaciones de transporte y manipulación 	0,60 ø _w f' _c [MPa]

Si la relación de esbeltez del alma o del ala es mayor que 15, el factor de reducción, Φ_w se deberá calcular de acuerdo con el Artículo 5.7.4.7.2.

5.9.3 - Límites de Tensiones en el Hormigón

5.9.4.1.2. Tensiones de Tracción después de las pérdidas

Tabla 5.9.4.2.2-1 – Límites para la tensión de tracción en el hormigón pretensado en estado límite de servicio después de las pérdidas – Elementos totalmente pretensados

Tipo de puente	Ubicación	Tensión límite
Todos los	Tracción en la zona de tracción precomprimida, suponiendo s Para elementos con cables de pretensado o armadura adherente sujetos a condiciones de	ecciones no fisuradas $0,50 \sqrt{f'_c}$ [MPa]
los puentes construidos por dovelas	Para elementos con cables de pretensado o armadura adherente sujetos a condiciones de corrosión severas	$0.25 \sqrt{f_c}$ [MPa]
	Para elementos con cables de pretensado no adherentes	Tracción nula

Las tensiones de tracción en los elementos que tienen cables de pretensado adherentes o no adherentes, se deben investigar utilizando la Combinación de Cargas para Estado Límite de Servicio III

5.9.5.2 Pérdidas Instantáneas

5.9.5.2.1 Acuñamiento de anclajes

La magnitud del acuñamiento de los anclajes será el valor mayor entre el requerido para controlar la tensión en el acero de pretensado en el momento de la transferencia o el recomendado por el fabricante de los anclajes. La magnitud del acuñamiento supuesto para el diseño y utilizado para calcular la pérdida deberá estar indicada en las especificaciones técnicas y se deberá verificar durante la construcción.

5.9.5.2 Pérdidas Instantáneas

5.9.5.2.2 Fricción

En Postesado

$$\Delta f_{\rho F} = f_{\rho j} \left(1 - \mathrm{e}^{-\left(K \times + \; \mu \; \alpha \right)} \right)$$

f_{pj} = tensión en el acero de pretensado en el momento del tesado [MPa] x = longitud de un cable de pretensado desde el extremo del gato de tesado hasta cualquier punto considerado [m]

K = coeficiente de fricción por desviación de la vaina de pretensado (por m de cable)

μ = coeficiente de fricción

α = sumatoria de los valores absolutos de la variación angular del trazado del acero de pretensado entre el extremo del gato de tesado, o entre el extremo del gato de tesado más próximo si el tesado se realiza igualmente en ambos extremos, y el punto investigado [radianes]

5.9.5.2 Pérdidas Instantáneas

5.9.5.2.2 Fricción

En Postesado

$$\Delta f_{pF} = f_{pj} \left(l - e^{-(\kappa \times + \mu \alpha)} \right)$$

En ausencia de datos del fabricante, se puede utilizar para K y α un valor comprendido dentro de los rangos especificados en la Tabla 5.9.5.2.2.2-1.

Tabla 5.9.5.2.2.2-1 - (Coeficientes d	le fricción para	cables de postesado
-------------------------	----------------	------------------	---------------------

Tipo de acero	Tipo de vaina	K	μ
	Vaina rígida y semirrígida de metal galvanizado	0,0002	0,15 - 0,25
Alambres o cordones	Polietileno	0,0002	0,23
	Desviadores de tubería de acero rigida para cables externos	0,0002	0,25
Barras de alta resistencia	Vaina de metal galvanizado	0,0002	0,30

5.9.5.2 Pérdidas Instantáneas

5.9.5.2.3 Acortamiento Elástico

En Pretesado

$$\Delta f_{pES} = \frac{E_p}{E_{ct}} f_{cgp}$$

f_{cgp} = tensión del hormigón en el centro de gravedad de los cables de pretensado debida a la fuerza de pretensado inmediatamente después de la transferencia y al peso propio del elemento en la sección de máximo momento [MPa]

E_p = módulo de elasticidad del acero de pretensado [MPa]

E_{ct} = módulo de elasticidad del hormigón en el momento de la transferencia o en el momento de aplicación de la carga [Mpa]

5.9.5.2 Pérdidas Instantáneas

5.9.5.2.3 Acortamiento Elástico

En Postesado

$$\Delta f_{pES} = \frac{N-1}{2 N} \frac{E_p}{E_{ci}} f_{egp}$$

N = número de cables de pretensado idénticos f_{cgp} = sumatoria de las tensiones del hormigón en el centro de gravedad de los cables de pretensado debidas a la fuerza de pretensado después del tesado y al peso propio del elemento en las secciones de máximo momento [MPa]

5.9.5.3 Estimación Aproximada de las Pérdidas Dependientes del Tiempo

En los elementos prefabricados estándares pretensados sujetos a cargas y condiciones ambientales normales, cuando:

- •los elementos son de hormigón de peso normal,
- el hormigón se cura al vapor o en húmedo,
- •el pretensado se realiza con barras o cordones con propiedades de relajación baja o normal
- •el sitio se caracteriza por condiciones de exposición y temperaturas medias.

las pérdidas de pretensado a largo plazo, Δ **fpLT**, debidas a la fluencia lenta y contracción del hormigón y a la relajación del acero se pueden estimar usando la siguiente fórmula:

$$\Delta f_{pLT} = 10 \frac{f_{pi} A_{ps}}{A_g} \gamma_h \gamma_{st} + 82.74 \gamma_h \gamma_{st} + \Delta f_{pR}$$

5.9.5.3 Estimación Aproximada de las Pérdidas Dependientes del Tiempo

$$\Delta f_{pLT} = 10 \ \frac{f_{pi} \ A_{ps}}{A_g} \gamma_h \ \gamma_{st} + 82.74 \ \gamma_h \ \gamma_{st} + \Delta f_{pR}$$

$$\gamma_h = 1.7 - 0.01 H$$

$$\gamma_{st} = \frac{34.5}{6.9 + f_{ci}}$$

f_{pi} = tensión en el acero de pretensado inmediatamente antes de la transferencia [MPa]

H = humedad relativa ambiente anual media [%]

 γ h = factor de corrección que considera la humedad relativa del ambiente γ st = factor de corrección que considera la resistencia especificada del hormigón en el momento en que la tensión de pretensado se transfiere al elemento de hormigón

 Δ fpR = estimación de la pérdida por relajación que se toma como **16,5 MPa** para los cordones de baja relajación, **69 MPa** para los cordones aliviados de tensiones y según las recomendaciones del fabricante para otros tipos de cordones [MPa]

5.9.5.3 Estimación Aproximada de las Pérdidas Dependientes del Tiempo

Para las vigas, excepto para aquellas que forman una construcción compuesta con una losa de hormigón, las pérdidas de pretensado dependientes del tiempo debidas a la fluencia lenta y contracción del hormigón y a la relajación del acero se deberán determinar usando el método refinado del Artículo 5.9.5.4.

En el caso de los puentes de hormigón construidos por dovelas, las pérdidas calculadas como un valor global solo se pueden utilizar a los fines del diseño preliminar.

Para los elementos en los cuales las dimensiones, el nivel de pretensado, las etapas constructivas o los materiales del hormigón no son los habituales, se deberá utilizar el método refinado del Artículo 5.9.5.4 o bien un método computarizado que considere incrementos de tiempo.

5.9.5.3 Estimaciones Refinadas de las Pérdidas Dependientes del Tiempo

$$\varDelta f_{pLT} \; = \; \left(\varDelta f_{pSR} \; + \; \varDelta f_{pCR} \; + \; \varDelta f_{pR\,I} \right)_{id} \; + \; \left(\varDelta f_{pSD} \; + \; \varDelta f_{pCD} \; + \; \varDelta f_{pR\,I} \; - \; \varDelta f_{pSS} \; \right)_{df}$$

sumatoria de las pérdidas de pretensado dependientes del tiempo producidas entre la transferencia de tensión y la colocación del tablero [MPa]

DE CARP

sumatoria de las pérdidas de pretensado dependientes del tiempo producidas después de la colocación del tablero [MPa]

5.9.5.4.2. Pérdidas: Momento de Transferencia de Tensión al Momento de Colocación del Tablero

5.9.5.4.2.1. Contracción de la Viga de Hormigón

$$\Delta f_{pSR} = \varepsilon_{bid} E_p K_{id}$$

$$K_{id} = \frac{1}{1 + \frac{E_p}{E_{ci}} \frac{A_{ps}}{A_g} \left(1 + \frac{A_g e_{pg}^2}{I_g} \right) \left[1 + 0.7 \psi_b(t_f, t_i) \right]}$$

 $arepsilon_{
m bid}$ = deformación por contracción del hormigón de la viga, Ecuación 5.4.2.3.3-1, entre el momento de transferencia y la colocación del tablero

K_{id} = coeficiente de la sección transformada que considera la interacción dependiente del tiempo entre el hormigón y la armadura adherente en la sección analizada para el período de tiempo entre la transferencia y la colocación del tablero

 e_{pg} = excentricidad de la fuerza de pretensado con respecto al baricentro de la viga [m]; en construcciones corrientes será positivo si está por debajo del baricentro de la viga $\psi_b(t_f, t_i)$ = coeficiente de fluencia lenta de la viga, Ecuación 5.4.2.3.2-1, correspondiente al tiempo final debido a la introducción de carga en el momento de transferencia t_i = edad final [días] t_i = edad al momento de transferencia [días]

5.9.5.4.2. Pérdidas: Momento de Transferencia de Tensión al Momento de Colocación del Tablero

5.9.5.4.2.1. Fluencia Lenta de la Viga de Hormigón

DE CAR

$$\Delta f_{\rho CR} = \frac{E_{\rho}}{E_{ci}} f_{cgp} \psi_{b}(t_{d}, t_{i}) K_{id}$$

 $\psi_{\rm b}({\rm t_d,\,t_i})$ = coeficiente de fluencia lenta de la viga, Ecuación 5.4.2.3.2-1, correspondiente al tiempo final debido a la introducción de carga en el momento de transferencia

t_d= edad de la colocación del tablero [días]

t_i = edad al momento de transferencia [días]

5.9.5.4.2. Pérdidas: Momento de Transferencia de Tensión al Momento de Colocación del Tablero

5.9.5.4.2.1. Relajación de la armadura de pretensado

DE CAR

$$\Delta f_{pRI} = \frac{f_{pt}}{K_L} \left(\frac{f_{pt}}{f_{py}} - 0.55 \right)$$

f_{pt} = tensión en los cordones de pretensado inmediatamente después de la transferencia, en la Ecuación 5.9.5.4.2.3-1 adoptar no menos que 0,55·fpy

KL = 30 para cordones de baja relajación y 7 para los demás aceros de pretensado, a menos que estén disponibles datos más precisos del fabricante

La pérdida de relajación, Δf_{pR1} , en cordones de baja relajación, se puede suponer igual a 8,3 MPa.

5.9.5.4.3. Pérdidas: Momento de Colocación del Tablero al Tiempo Final

5.9.5.4.3.1. Contracción de la Viga de Hormigón

$$\Delta f_{pSD} = \varepsilon_{bdf} E_p K_{df}$$

$$K_{df} = \frac{1}{1 + \frac{E_p}{E_{di}} \frac{A_{ps}}{A_c} \left[1 + \frac{A_e \cdot e_{pc}^2}{t_e} \right] \left[1 + 0.7 \psi_b \left(t_f, t_i \right) \right]}$$

 $\varepsilon_{\mathrm{bdf}}$ = deformación por contracción del hormigón de la viga, Ecuación 5.4.2.3.3-1, entre el momento de la colocación del tablero y el tiempo final

 K_{df} = coeficiente de la sección transformada que considera la interacción dependiente del tiempo entre el hormigón y la armadura adherente en la sección analizada para el período de tiempo entre la colocación del tablero y el tiempo final

e_{pc} = excentricidad de la fuerza de pretensado con respecto al baricentro de la sección compuesta [m]; en construcciones corrientes será positivo si está por debajo del baricentro de la sección

A_c = área de la sección analizada utilizando las propiedades de la sección de hormigón compuesta bruta de la viga y el tablero, y la relación de módulos entre el tablero y la viga [m2] lc = momento de inercia de la sección analizada utilizando las propiedades de la sección de hormigón compuesta bruta de la viga y el tablero, y la relación de módulos en servicio entre el tablero y la viga [m4]

5.9.5.4.3. Pérdidas: Momento de Colocación del Tablero al Tiempo Final

5.9.5.4.3.2. Fluencia Lenta de la Viga de Hormigón

DE CARP

$$\Delta f_{pCD} = \frac{E_p}{E_{ci}} f_{cgp} \left[\psi_b(t_f, t_i) - \psi_b(t_d, t_i) \right] K_{df} + \frac{E_p}{E_c} \Delta f_{cd} \psi_b(t_f, t_d) K_{df}$$

 Δf_{cd} = variación de la tensión del hormigón en el baricentro de los cordones de pretensado debido a las pérdidas a largo plazo entre el momento de transferencia y la colocación del tablero, combinado con el peso del tablero y las cargas superpuestas [MPa]

 $\psi_{\rm b}({\rm t_f},{\rm t_d})$ = coeficiente de fluencia lenta de la viga, Ecuación 5.4.2.3.2-1, correspondiente al tiempo final debido a la introducción de carga en el momento de la colocación del tablero

5.9.5.4.3. Pérdidas: Momento de Colocación del Tablero al Tiempo Final

5.9.5.4.3.4. Contracción del Tablero de Hormigón

La ganancia de pretensado debido a la contracción de la sección compuesta del tablero, Δf_{pSS} , se deberá determinar como:

$$\Delta f_{pSS} = \frac{E_p}{E_c} \Delta f_{odf} K_{df} \left[1 + 0.7 \psi_b \left(t_f, t_d \right) \right]$$

$$\Delta f_{cdf} = \frac{\varepsilon_{oldf} A_a E_{cd}}{\left[1 + 0.7 \psi_b \left(t_f, t_d\right)\right]} \left(\frac{I}{A_c} - \frac{e_{pc} e_d}{I_c}\right)$$

 Δf_{cdf} = variación de la tensión del hormigón en el baricentro de los cordones de pretensado debido a la contracción del hormigón del tablero [MPa] ε_{ddf} = deformación por contracción del hormigón del tablero, Ecuación 5.4.2.3.3-1, entre el momento de la colocación del mismo y el tiempo final

Ad = área de hormigón del tablero [m2]

E_{cd} = módulo de elasticidad del hormigón del tablero [MPa]

 e_d = excentricidad del tablero con respecto a la sección compuesta bruta, positiva en construcciones regulares donde el tablero está por encima de la viga [m] $\psi_b(t_f, t_d)$ = coeficiente de fluencia lenta del hormigón del tablero en el tiempo final,

Ecuación 5.4.2.3.2-1, debido a la introducción de cargas poco después de la colocación

del tablero (por ejemplo, sobrecapas, barreras, etc.)

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

Utilización AASHTO:

- **No existe Normativa Local**
- Coherencia entre el análisis de carga y el cálculo
- Asociación Argentina Je Carreteras Coherencia con otros Reglamentos de Estructuras de Acero.
- Acceso a la información

DE CARP

Diseño de la superestructura

- Ancho de la carretera
- Longitud del Puente
- Disposición de los tramos (hidrología, futuras ampliaciones, estética, etc)
- Seleccionar el tipo de puente (tipo cajón, Vigas I, reticulados, etc.)

Diseño de la superestructura

- VIGA I o Cajón
 - Compuesta
 - No compuesta
 - Híbrida o no
 - Altura variable o constante

DE CARP

- Limitaciones a las dimensiones de la sección (relaciones entre Alas, alma, espesores, etc)
- Simplemente apoyada o contínua
- Diseño del tablero

Materiales

Table 6.4.1-1 Minimum Mechanical Properties of Structural Steel by Shape, Strength, and Thickness.

DE CARRE

AASHTO	M 270M	M 270M	M 270M	M 270M	M 270M	M 270M	M 27	
Designation	Grade 250	Grade 345	Grade 345S	Grade 345W	Grade HPS 345W	Grade HPS 485W	Grades 69	
Equivalent ASTM	A 709M	A 709M	A 709M	A 709M	A 709M	A 709M	A 70	
Designation	Grade 250	Grade 345	Grade 345S	Grade 345W	Grade HPS 345W	Grade HPS 485W	Grades 69	
Thickness of	Up to 100 incl.	Up to	Not	Up to	Up to 100	Up to	Up to 65	Over 65 to
Plates, mm.		100 incl.	Applicable	100 incl.	incl.	100 incl.	incl.	100 incl.
Shapes	All Groups	All Groups	All Groups	All Groups	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Minimum Tensile Strength, F _a , MPa	400	450	450	485	485	585	760	690
Specified Minimum Yield Point or Specified Minimum Yield Strength, F _s , MPa	250	345 AF	34	345	DECK CE	455	690	620

Seleccionar factores de diseño

 Factor de ductilidad
 Factor de redundancia
 Factor de Importancia operacional

$$\sum \eta_i \gamma_i Q_i \le \phi R_n = R_r$$

$$\eta_i = \eta_D \eta_R \eta_I \ge 0.95$$

Combinaciones de Carga y factores de carga

Estado límite de resistencia

Estado límite de servicio

DE CARP

Estado límite de fatiga y fractura

Evento extremo

$$\eta_i = \frac{1}{\eta_D \eta_R \eta_I} \le 1.0$$

Calcular solicitaciones

Resistencia

DE CARA

- Objetivo: asegurar la adecuada resistencia y estabilidad del puente durante todas las fases de la construcción y su vida útil
- Requisitos: resistir las combinaciones de carga a las que el puente estará sometido en cada momento
- Combinaciones de cargas: RESISTENCIA I, RESISTENCIA II, RESISTENCIA IV V RESISTENCIA V

Servicio

- Objetivo: diseñar los puentes para evitar efectos estructurales y psicológicos no deseados debido a sus deformaciones
- Requisitos: asegurar el funcionamiento satisfactorio a lo largo de la vida útil especificando restricciones a la tensión, la deformación y el ancho de fisura, bajo condiciones regulares de servicio.
- ► Combinaciones de cargas: SERVICIO I, SERVICIO II Y SERVICIO III

Fatiga y Fractura

- Objetivo: controlar el crecimiento de las fisuras bajo repeticiones de carga, y prevenir la fractura durante la vida útil del puente
- Requisitos: satisfacer restricciones en el rango de tensión y presentar comportamiento dúctil bajo condiciones normales de servicio
- Combinaciones de cargas: FATIGA

Evento Extremo

- Objetivo: garantizar la supervivencia estructural durante un terremoto, una inundación importante, una colisión vehicular, o un flujo de hielo
- Requisitos: en caso de sismo será resistir una fuerza horizontal mínima en la unión entre la superestructura y la infraestructura en la dirección restringida (Longitudinal) y tener un apoyo que se acomode al máximo desplazamiento horizontal calculado en esa dirección
- Combinaciones de cargas: EVENTO EXTREMO I y

Combinación de cargas	DC DD DW EH EV	LL						3 33	*	Usar sólo uno por vez				
Estado límite	ES EL PS CR SH	CE BR LS	WA	ws	WL	FR	τυ	TG	SE	EQ (*)	BL	ic	CT	CV
Resistencia I (a menos que se especifique lo contrario)	Yp	1,75	1,00	-	-	1,00	0,50/1,20	Υтσ	Тав	J.P.	-	-	-	(4)
Resistencia II	Ye	1,35	1:00,	Ma		1,00	0,50/1,20	Yra	YSE		1	-	-	(2)
Resistencia III	76		1,00	1,40		1,00	0,50/1,20	Ута	Yas	1	-		·	-
Resistencia IV	70	-	1,00	4	1-	1,00	0,50/1,20	-	14	-		- 1	-	
Resistencia V	Ϋ́ρ	1,35	1,00	0,40	1,00	1,00	0,50/1,20	γта	YSE		- 500		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 0
Evento extremo I ^(*)	γ _p	YEQ	1,00		-	1,00	4-0	No.	-	1,00		4	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1
Evento extremo II	γ_{p}	0,50	1,00	- ·	-	1.00	-		7.4	19	1,00	1,00	1,00	1,00
Servicio I	1,00	1.00	1,00	0,30	1,00	1,00	1,00/1,20	γma	YSE	350 0	- 500	-5-1		- 0
Servicio II	1,00	1,30	1,00	-	1-63	1,00	1,00/1,20	-	4		-8	-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-
Servicio III	1,00	0.80	1,00	-		1,00	1,00/1,20	γтэ	Ϋ́ЗΕ		-	-	100 <u>+</u> 00	3
Servicio IV	1,00	-	1,00	0,70		1,00	1,00/1,20	12	1,00		-32			-
Fatiga I – sólo LL, IM y CE	1	1,50		OF			-	-		(5)	8	+	Di c	8
Fatiga II – sõlo LL, IM y CE	-	0.75	CA			-	-	T)	8		- 1 0	-	-	(5)

^{*}A definir por el INPRES

Tabla 3.4.1-2 – Factores de carga para cargas permanentes, γ_p

Tipo de carga, tipo	Factor d	Factor de carga			
Seg.	Máximo	Mínimo			
DC: Elementos y acces DC: Resistencia IV sol	1,25 1,50	0,90 0,90			
DD: Fricción negativa	Pilotes, Método α Tomlinson Pilotes, Método λ Pilotes excavados, Método O'Neill and Reese (1999)	1,40 1,05 1,25	0,25 0,30 0,35		
DW: Superficies de rod	1,50	0,65			
EH: Empuje horizontal Activo En reposo AEP para muros a EL: Tensiones residual EV: Empuje vertical de Estabilidad global Muros de sostenir Estructura rígida e Marcos rígidos	anclados es de montaje suelo miento y estribos	1,50 1,35 1,36 1,00 1,00 1,35 1,30 1,35	0,90 0,90 N/A 1,00 N/A 0,90 0,90		
 Estructuras flexibles of Alcantarillas of Corrugado Alcantarillas te corrugados of Alcantarillas te corrugados of Todas las den 	etálicas y alcantarillas de placa estructural con fondo ermoplásticas	1,50 1,30 1,95	0,90 0,90 0,90		
ES: Sobrecarga de sue	do / / /	1,50	0.75		

Combinaciones de carga

RESISTENCIA I – Combinación de cargas básicas correspondiente al uso vehicular normal del puente, sin viento.

RESISTENCIA II – Combinación de cargas correspondiente al uso del puente por parte de vehículos de diseño especiales especificados por el Propietario, vehículos de circulación restringida, o ambos, sin viento.

RESISTENCIA III – Combinación de cargas correspondiente al puente expuesto a vientos con velocidades superiores a 25 m/s.

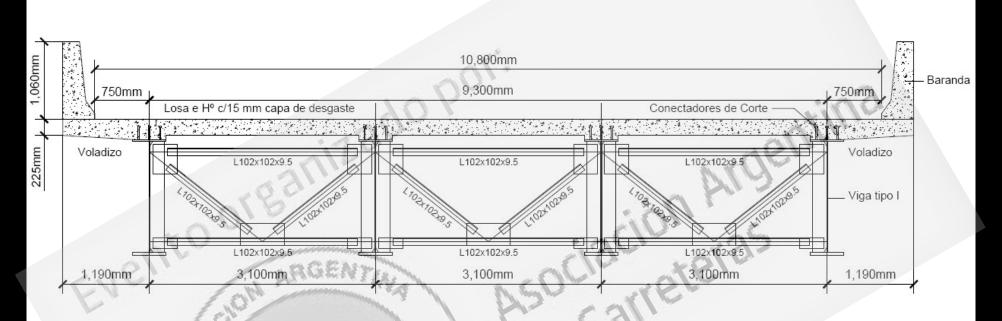
RESISTENCIA IV – Combinación de cargas correspondiente a relaciones muy elevadas entre los efectos provocados por las cargas permanentes y los provocados por las sobrecargas.

RESISTENCIA V – Combinación de cargas correspondiente al uso del puente por parte de vehículos normales con una velocidad del viento de 25 m/s.

Combinaciones de carga

- <u>EVENTO EXTREMO I</u>: incluye cargas producidas por sismo.
- EVENTO EXTREMO II: considera choques de embarcaciones y/o vehículos.
- SERVICIO I: considera la operación normal del puente con un viento de 25 m/s,
- SERVICIO II: se utiliza para controlar la fluencia del acero y las uniones de deslizamiento crítico tipo fricción al bajo la carga de diseño vehicular.
- SERVICIO III: se utiliza para controlar la fisuración en estructuras de hormigón pretensado.
- FATIGA: se utiliza para considerar los ciclos de repeticiones de carga producidas por el camión de diseño.

DE CARP


Factores de Resistencia

- For flexure = *1.00*
- For shear = 1.00
- For axial compression, steel only = 0.90
- For axial compression, composite = 0.90
- For tension, fracture in net section = 0.80
- For tension, yielding in gross section = 0.95
- For bearing on pins in reamed, drilled or bored holes and on milled surfaces =1.00
- For bolts bearing on material = 0.80
- For shear connectors = 0.85
- For A 325M and A 490M bolts in tension = 0.80
- For A 307 bolts in tension = 0.80
- For A 307 bolts in shear = 0.65

DE CARE

- For A 325M and A 490M bolts in shear = 0.80
- For block shear = 0.80
- For web crippling = 0.80

Diseño

Seccion Transversal con Riostra Intermedia

DE CARRE

Geometria

Geometría

Algunos de los ítems principales de diseño

rgentina

- Diseño a Flexión
 Secciones Compactas
 Secciones No-Compactas
- Diseño al Corte
 Almas no rigidizadas
 Almas rigidizadas transversalmente
- Diseño a la Fatiga
- Diseño del rigidizador transversal intermedio
- Diseño del rigidizador de apoyo
- Diseño de la losa de hormigón
 Método empírico de diseño
 Diseño del voladizo
- Diseño de Conectadores de corte
- Diseño de Riostra
 Riostras intermedias
 Riostras extremas
- Diseño de uniones abulonadas
- Diseño del apoyo elastomérico

DE CARRE

- Estado Límite Último de Resistencia

DE CARRE

ado Límite Último de Resistencia
Flexión
► Cálculo del Momento último Mu
$$M_{U} = \eta \cdot \sum_{i} \gamma_{i} \cdot M_{i}$$
Combinación de Carga determinante

Estado Límite Último de Resistencia

DE CARP

- Flexión
 - Cálculo de la resistencia nominal a flexión Mn
 - ► Cálculo del Momento de Plastificación Mp: equilibrio de fuerzas asumiendo que el eje neutro plástico se encuentra dentro del ala superior de la viga principal. de alma se Como la profundidad del alma en compresión es igual a cero, el requerimiento de esbeltez de alma se cumple automáticamente.
- autom. ▶ No hay requerimientos de esbeltez ni de arriostramiento del ala comprimida, se asume que ésta se encuentra adecuadamente arriostrada por el tablero de hormigón endurecido

Estado Límite Último de Resistencia

- Flexión
 - ► Cálculo de Mp por equilibrio de fuerzas

Estado Límite Último de Resistencia

- ► Corte
 - ► Cálculo del Corte último Vu

$$V_u = \eta \cdot \sum_i \gamma_i \cdot V_i$$

DE CARP

Combinación de Carga determinante

 $Vu < \phi_v.Vn$ siendo $\phi_v = 1$

La AASHTO LRFD Specification menciona que se utilizarán rigidizadores transversales siempre y cuando:

$$\frac{D}{t_{w}} > 150$$

Estabilidad y Resistencia durante la construcción

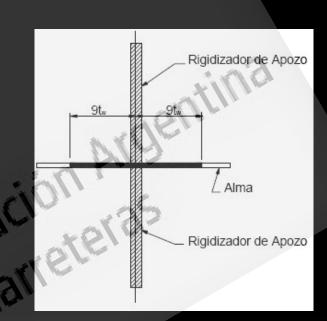
- ► Objetivo: Someter a verificaciones de resistencia y estabilidad a aquellos elementos de secciones I que no trabajan en sección compuesta durante la construcción pero que si lo hacen una vez endurecido el hormigón.
- La sección de acero se verifica solamente bajo la acción de las cargas muertas factorizadas DC1. En rigor se debe tener en cuenta la secuencia de hormigonado que produzca las solicitaciones máximas.

 Verificaciones:

 Pandeo Local del Alma

 Pandeo Local del Ala Comprimida
- Verificaciones:

 - Pandeo Lateral Torsional


DE CAR

NOTA: No se considera en esta verificación el soporte lateral ofrecido al ala comprimida por el encofrado perdido. Si se considera que existe arriostramiento lateral en correspondencia con la diagonal de las riostras

Diseño del Rigidizador de Apoyo

- Los rigidizadores de apoyo se diseñan como columnas de modo de trasladar las reacciones máximas de las vigas hasta los apoyos elastoméricos.
- ► La resistencia axil de los rigidizadores de apoyo equivale a la de una columna compuesta por: los rigidizadores propiamente dichos y una franja central de alma que se extiende 9 veces el espesor de la misma a cada lado de los rigidizadores

DE CARP

- Resistencia a la compresión para pandeo flexional
- Resistencia a la flexión para pandeo torsional

Diseño de Soldadura Ala - Alma

- Estas soldaduras deben resistir las tensiones de corte horizontal en el plano de resbalamiento ala/alma
- ► Procedimiento
 - Cálculo de la resistencia de diseño de la soldadura Es la menor entre:

Resistencia de diseño del metal de soldadura calculada como:

$$Rr = 0.6.\phi_{e2}.F_{exx}A_{soldadura}$$

Resistencia de diseño a corte del material conectado:

$$Rr = 0.58.\phi_{v}.A_{o}.F_{v}$$

Diseño de Soldadura Ala - Alma

- ► Cálculo de la resistencia última requerida (s) Las tensiones de corte se calculan aplicando la teoría de Jouravsky. Luego se combinan bajo la combinación de carga RESISTENCIA I
- ▶ Verificación

s < Rr

NOTA: En el cálculo de las tensiones de corte para el diseño de la soldadura ala – alma y en las de flexión para la verificación de flecha permanente se considera que la carga:

DC1 actúa en la sección de acero

DC2 y DW actúan en la sección compuesta a Largo Plazo LL_IM actúa en la sección compuesta a Corto Plazo

- 1) DC1: carga que actúa en la sección no compuesta
- 2) DC2: carga que actúa en la sección compuesta a largo plazo.

Cargas

Cargas permanentes

CR = solicitaciones generadas por fluencia lenta

DD = fricción negativa

DC = peso propio de los componentes estructurales y agregados no estructurales
 DW = peso propio de las superficies de rodamiento e instalaciones para servicios

EH = empuje horizontal del suelo

EL = diversas tensiones residuales resultantes del proceso constructivo, incluyendo en la construcción parcial la elevación separada de voladizos

ES = sobrecarga de suelo

EV = presión vertical del peso propio del suelo de relleno

PS = fuerzas secundarias de postensado

SH = solicitaciones generadas por contracción

Cargas transitorias

BL = cargas explosivas

BR = fuerza de frenado de los vehículos

CE = fuerza centrifuga de los vehículos

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una embarcación

EQ = carga sísmica (a definir por el INPRES)

FR = carga de fricción IC = carga de hielo

IM = incremento por carga vehicular dinámica

LL = sobrecarga vehicular

LS = sobrecarga viva

PL = sobrecarga peatonal

SE = solicitaciones generadas por asentamiento

TG = solicitaciones generadas por gradiente de temperatura

DE CARP

TU = solicitaciones generadas por temperatura uniforme

WA = carga hidráulica y presión del flujo de agua

WL = viento sobre la sobrecarga

WS = viento sobre la estructura

Conectores de Corte

Introducción

- En secciones compuestas se debe proveer de conectadores de corte a la interfase entre la losa de hormigón y la sección de acero para resistir los esfuerzos de corte.
- La AASHTO LRFD especifica que los puentes de sección compuesta de tramos simplemente apoyados deben ser provistos de conectadores de corte en toda la longitud de la viga.
- Los conectadores que se adoptan (tipo Stud) permiten una correcta compactación del hormigón, tal que aseguran que toda la superficie quede en contacto con el hormigón.
- La Norma especifica que los conectadores deben penetrar como mínimo el 50% del espesor de la losa y no debe ser menor a 50 mm.

Vigas Principales

Paso de los conectadores de corte

Se determina para satisfacer el Estado Límite de FATIGA y luego se verifica contra el número requerido por el Estado Límite de RESISTENCIA.

Paso de los conectadores de corte

Estado límite de RESISTENCIA

 La resistencia de diseño de un conectador de corte embebido en una losa de hormigón (Qr) se calcula;

$$Qr = \psi sc \times Qn$$
 : $\phi sc = 0.85$
 $Qn = 0.5 \times Asc \times \sqrt{f'c \times Ec} \le Asc \times Fu$

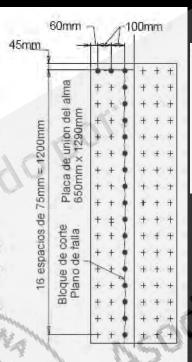
donde: Asc: sección del conectador de corte

f'c: resistencia característica (30Mpa)

Ec: módulo de elasticidad del hormigón

Fu: mínima resistencia a tracción especificada para

un conectador de corte

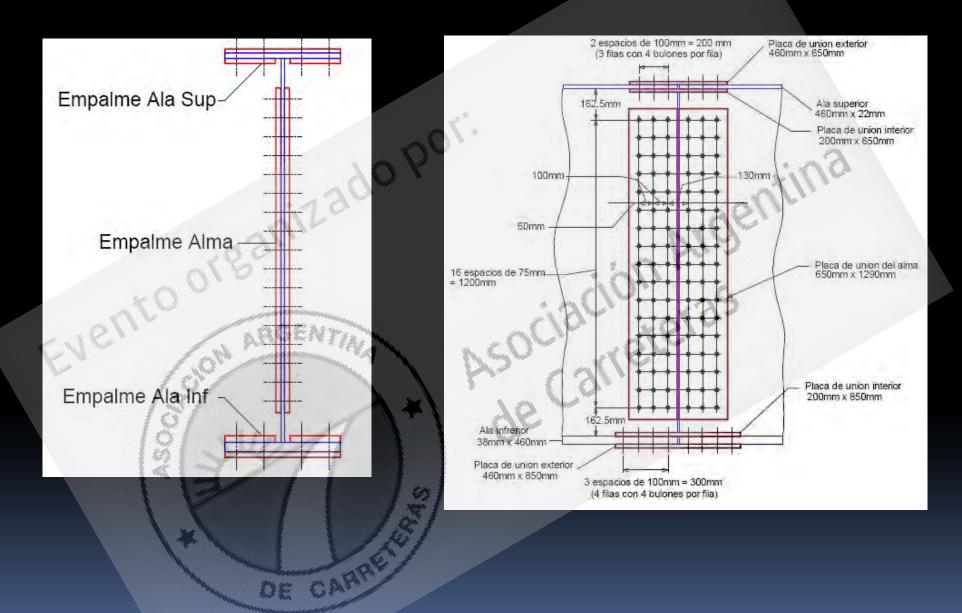

$$n = \frac{Vh}{Qr}$$

Empalme de Alma

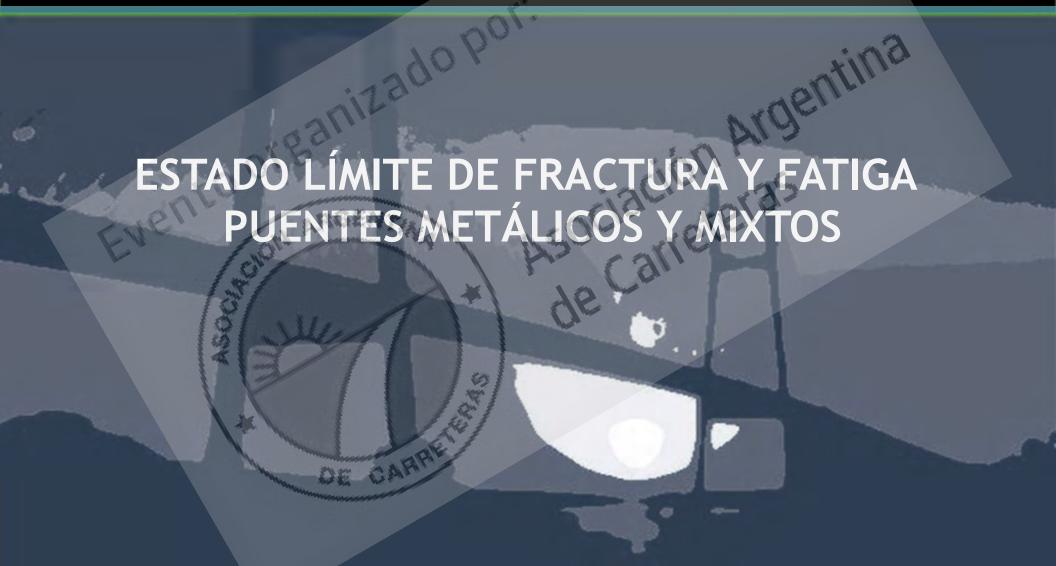
- Chapas de Empalme de Alma
 - 1) Estado Límite Último de Resistencia
 - Flexión
 - Corte
 - 1) Fluencia en la sección Bruta
 - 2) Rotura en la sección Neta
 - 3) Rotura por Bloque de Corte
 - 2) Estado Límite de Fatiga y Fractura
 - Solicitaciones producidas por la Combinación de Carga FATIGA en el empalme
 - Determinación de γ.Δf en la fibra más alejada (con V + y con V -)

DE CARR

Verificación: γ. Δf<ΔF_{TH}

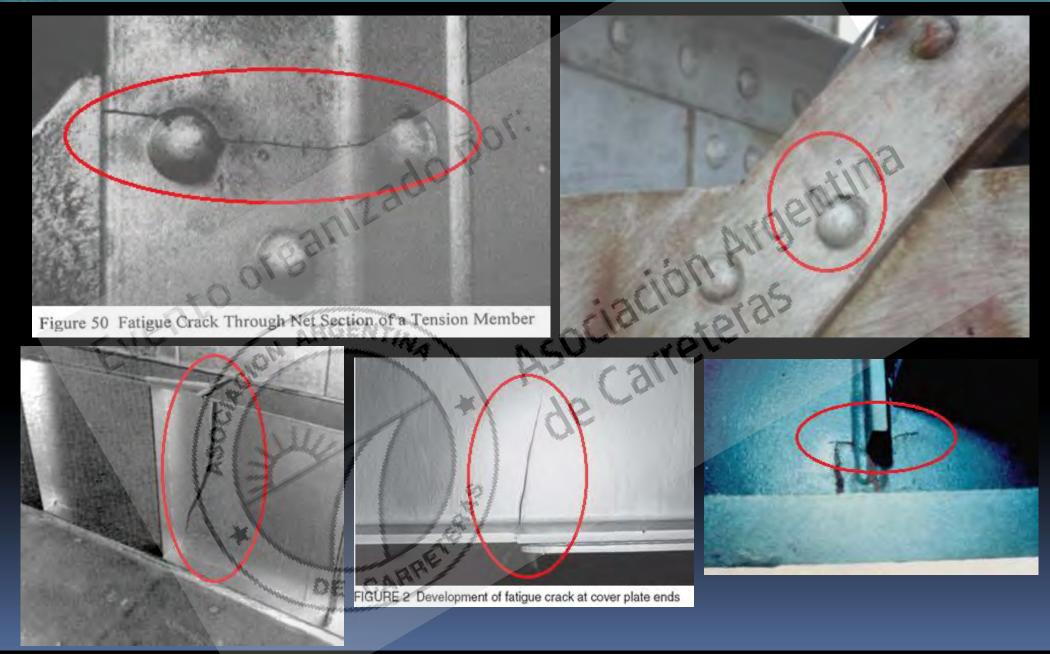

Bulones de Alma

- a Corte y Aplastamiento en Estado Límite Último de Resistencia producido por la Combinación de Cargas más desfavorable (asumiendo que se produjo deslizamiento)
- a Deslizamiento en Estado Límite de Servicio de Deflexión Permanente producido por la Combinación de Cargas SERVICIO II.


Rotura por Bloque de Corie - Chapa de Empaime del Alma

Vigas Principales

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800


INTRODUCCIÓN.

INTRODUCCIÓN

- En el diseño y dimensionamiento de puentes metálicos y mixtos es de fundamental importancia la **evaluación a fatiga**.
- Estos puentes poseen una relación cargas vivas / cargas muertas alta, por lo que el rango de tensiones actuantes en los elementos es muy considerable.
- En elementos estructurales como vigas transversales, largueros longitudinales, studs, etc., muy posiblemente, su dimensionamiento sea regido por estado límite de fractura y fatiga. En general, las vigas principales son menos afectadas por su menor relación cargas vivas/cargas muertas y su menor cantidad de ciclos debido a su mayor luz.
- Los detalles constructivos (básicamente, uniones) son los que rigen la calificación a fatiga y, por ende, el dimensionamiento del elemento estructural analizado.
- Es fundamental determinar e incluir en la documentación constructiva, los elementos de fractura crítica (elementos traccionados que ante su falla se genera el colapso parcial o total de la estructura), para su posterior inspección y evaluación en los procesos de mantenimientos preventivo y correctivo.
- La resistencia a fatiga de la estructura a diseñar depende, básicamente, del correcto diseño de detalles constructivos, evitando o atenuando dentro de los posible, los concentradores de tensiones.

FISURACIÓN POR FATIGA

FISURACIÓN POR FATIGA

FISURACIÓN POR FATIGA

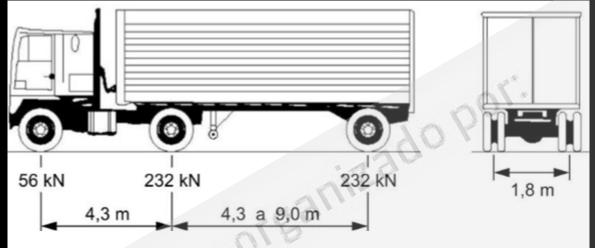
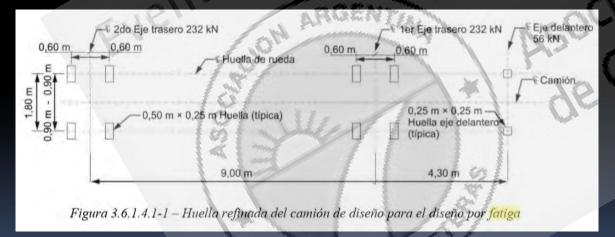



Figura 3.6.1.2.2-1 - Características del camión de diseño

DE CAR

Tabla 3.6.2.1-1 - Incremento por Carga Dinámica, IM

Componente	JM.
untas del tablero – Todos los Estados Limite	75%
Estado Limite de Fatiga y Fractura Todos los demas Estados Limite	15%

- Se adopta la carga de un único camión de diseño con separación entre ejes traseros de 9.0 m y coeficiente de impacto 1.15.
- Las solicitaciones consecuentes en el elemento estructural analizado, en conjunto con la cantidad de ciclos prevista en la vida útil de la estructura y el detalle constructivo analizado, regirá el dimensionamiento de dicho elemento para cargas cíclicas.

ESTADOS LÍMITES Y FACTORES DE CARGA.

Combinación de cargas EH	LL								Usar sólo uno por vez					
Estado límite	ES EL PS CR SH	IM CE BR PL LS	WA	ws	WL	FR	TU	TG	SE	EQ (*)	BL	IC	СТ	cv
Resistencia I (a menos que se especifique lo contrario)	γp	1,75	1,00	8	1.15	1,00	0,50/1,20	Ϋ́τG	γsε					1,1
Resistencia II	Yp	1,35	1,00	100	14	1,00	0,50/1,20	Ϋ́τg	YSE		-1	TE	-	-
Resistencia III	Yp		1,00	1,40	****	1,00	0,50/1,20	YTG	YSE					100
Resistencia IV	Yp	2	1,00	1.	SHE	1,00	0,50/1,20	NO.	16	245		0		
Resistencia V	10	1,35	1,00	0,40	1,00	1,00	0,50/1,20	/TG	YSE			100		-
Evento extremo	7p	YEQ	1,00		100	1,00	1-	1-		1,00	8	17	-	*
Evento extremo	γр	0,50	1,00	13.		1,00	1.	A	4	46	1,00	1,00	1,00	1,00
Servicio I	1,00	1,00	1,00	0,30	1,00	1,00	1,00/1,20	Ϋ́ΤG	YSE	1		7.40		TV.
Servicio II	1,00	1,30	1,00	-	1/2	1,00	1,00/1,20	-	100	1.2	151	4	9	- A
Servicio III	1,00	0,80	1,00	3/	-	1,00	1,00/1,20	YTG	YSE		-	120	1020	
Servicio IV	1,00	-	1,00	0,70	-	1,00	1,00/1,20		1,00			-	-	- 1
Fatiga I – sólo LL, IM y CE		1,50				-	7.8		114	1			•	*
Fatiga II – sólo LL, IM y CE		0,75	-					9		· ·	15	2		28]

Factores de carga para la evaluación a fatiga:

- Estado límite
 Fatiga I: (para vida útil infinita):
 1.50
- Estado límite
 Fatiga II: (para vida útil finita (cantidad de ciclos hasta la vida útil esperada (75 años))):
 0.75

VERIFICACIÓN A FATIGA.

 $ADTT_{SL} = p \cdot ADTT \tag{3.6.1.4.2-1}$

Donde:

ADTT = número de camiones por día en una dirección, promediado sobre el período de diseño

ADTT_{SL} = número de camiones por día en un único carril, promediado sobre el período de diseño

p = fracción del tránsito en un único carril, como se especifica en la Tabla 3.6.1.4.2-1

Tabla 3.6.1.4.2-1 – Fracción de tránsito de camiones en un único carril, p

Números de carriles disponibles para camiones	р
1	1,00
2	0,85
3 o más	0,80

 Debe determinarse el número diario de camiones en único carril ADTT_{SL}.

Tabla 6.6.1.2.5-2 Ciclos por pasada de camión, n

Elementos	Longitud	de tramo
longitudinales	> 12 000 mm	≤ 12 000 mm
Vigas de un solo tramo	1.0	2.0
Vigas continuas	1111	
1) cerca de un apoyo interior	1.5	2.0
2) otras ubicaciones	1.0	2.0
Vigas en voladizo	5	.0
Celosías	1	.0
Elementos	Sepai	ración
transversales	>6000 mm	≤6000 mm
	1.0	2.0

 De acuerdo a la luz del elemento, se establece la cantidad de ciclos por cada paso de camión

VERIFICACIÓN A FATIGA

6.6.1.2.2—Design Criteria

For load-induced fatigue considerations, each detail shall satisfy:

$$\gamma(\Delta f) \le (\Delta F)_{\mu} \tag{6.6.1.2.2-1}$$

where:

- γ = load factor specified in Table 3.4.1-1 for the fatigue load combination
- (Δf) = force effect, live load stress range due to the passage of the fatigue load as specified in Article 3.6.1.4 (ksi)
- $(\Delta F)_n$ = nominal fatigue resistance as specified in Article 6.6.1.2.5 (ksi)
- Se requieren dos verificaciones:
 - Para vida útil infinita.
 - Para vida útil finita (cantidad de ciclos hasta la vida útil esperada (75 años)).
- En el primer caso, se toma como valor de comparación ΔFτH, el umbral del rango de tensiones y factor de carga de 1.50.
- En el segundo, el valor de comparación ΔFn depende de la cantidad de ciclos sufridos hasta el fin de la vida útil y factor de carga es 0.75.

6.6.1.2.5—Fatigue Resistance

Except as specified below, nominal fatigue resistance shall be taken as:

For the Fatigue I load combination and infinite life:

$$\left(\Delta F\right)_n = \left(\Delta F\right)_{TH} \tag{6.6.1.2.5-1}$$

For the Fatigue II load combination and finite life:

$$\left(\Delta F\right)_{n} = \left(\frac{A}{N}\right)^{\frac{1}{3}} \tag{6.6.1.2.5-2}$$

in which:

$$N = (365)(75)n(ADTT)_{rr} (6.6.1.2.5-3)$$

where:

A = constant taken from Table 6.6.1.2.5-1 (ksi^3)

n = number of stress range cycles per truck passage taken from Table 6.6.1.2.5-2

 $(ADTT)_{SL}$ = single-lane ADTT as specified in Article 3.6.1.4

 $(\Delta F)_{TH}$ = constant-amplitude fatigue threshold taken from Table 6.6.1.2.5-3 (ksi)

CURVA DE RESISTENCIA A FATIGA S-N Y UMBRALES DE RANGO DE TENSIONES AFTH PARA CADA CALIFICACIÓN

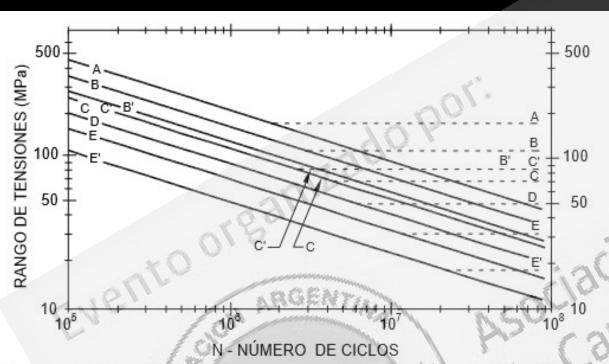
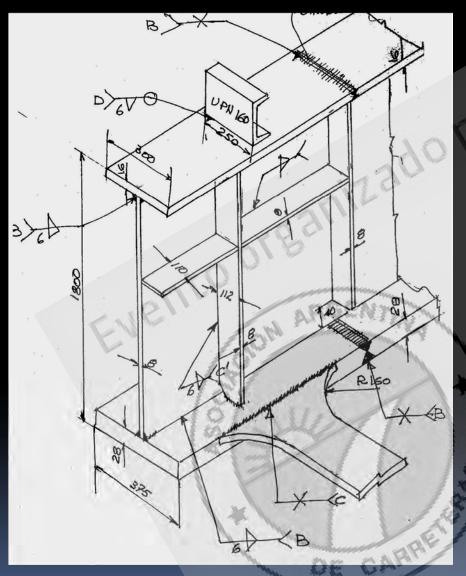
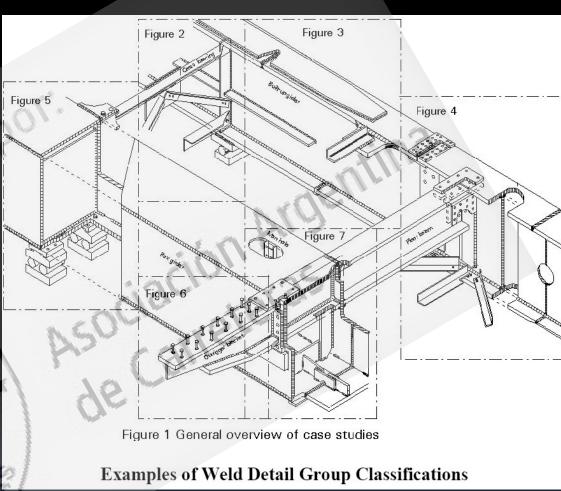


Figura C6.6.1.2.5-1 Rango de tensiones en función del número de ciclos

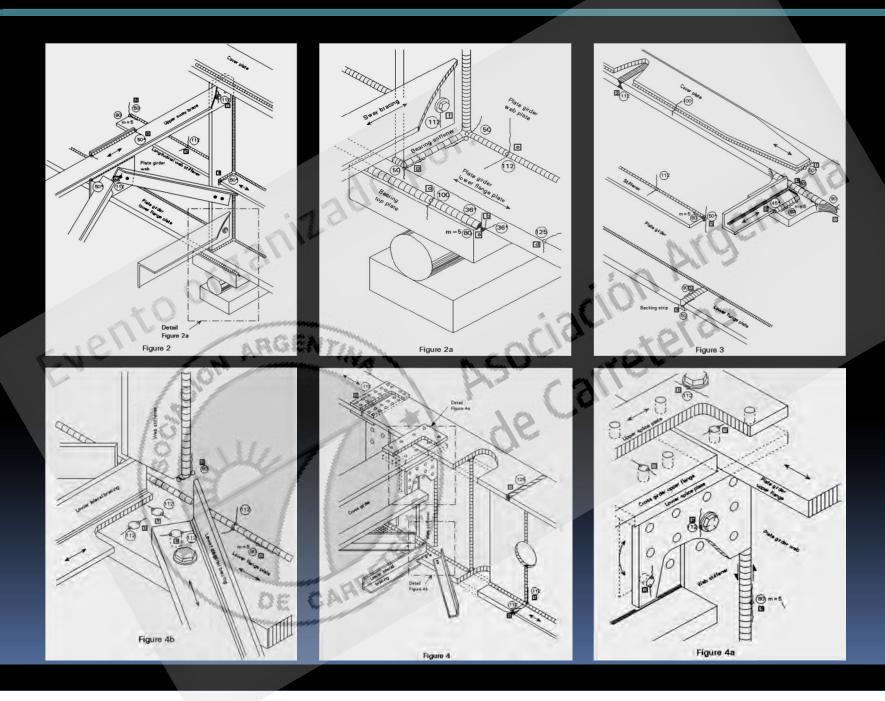
- Cada detalle estructural (generalmente uniones) es calificado a fatiga mediante una letra.
- Se encuentran tabulados, una gran cantidad de detalles constructivos usuales.
- La calificación a fatiga depende, fundamentalmente, del nivel de concentración de tensiones que genera el detalle constructivo analizado.
- Detalles como el E , poseen un rango de tensiones umbral ΔΕτη de solo 17.9 MPa
- El número de ciclos a utilizar es de amplitud constante.
- En la verificación de puentes existentes deberá utilizarse un método para transformar los ciclos de amplitud variables obtenidos a través de histograma de cargas pasado, en ciclos de amplitud constante equivalente, por ejemplo, mediante el método de Rainflow.
- El daño acumulado por fatiga puede establecerse a través de la regla de Palmgren Miner.

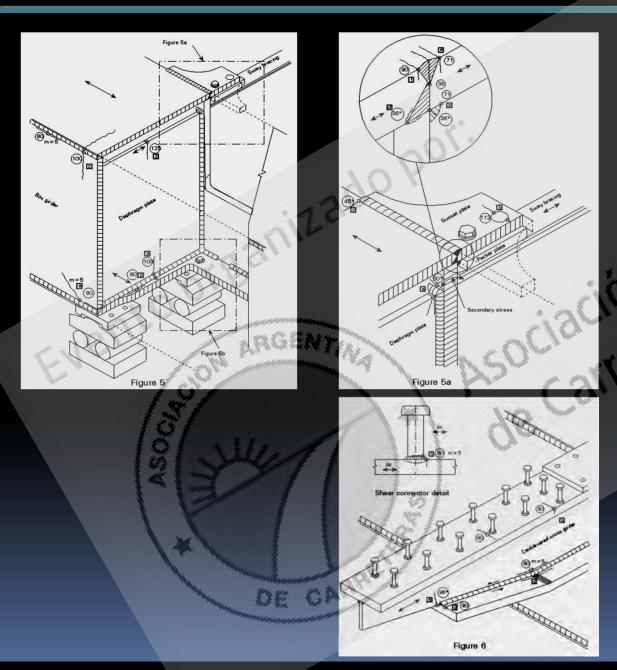
UMBRALES DE FATIGA PARA AFTH PARA AMPLITUD CTE.

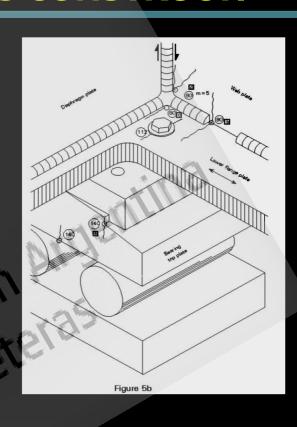

Tabla 6.6.1.2.5-3 Umbrales de fatiga para amplitud constante

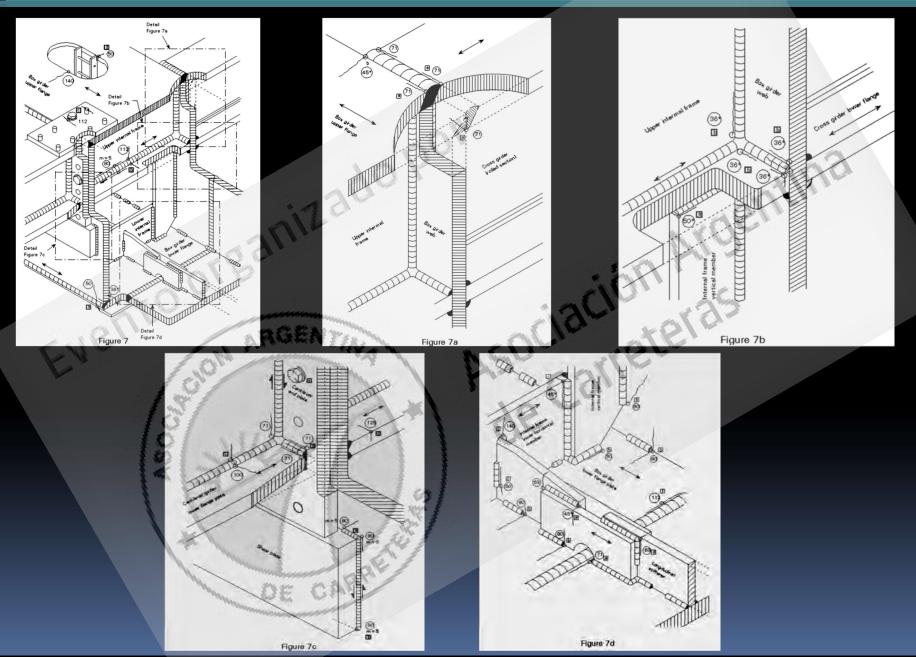

Categoría	Umbral (MPa)
A	165.0
В	110.0
В'	82.7
C	69.0
C' 0	82.7
D	48.3
E	31.0
E'	17.9
Bulones M 164M (A 325M) en tracción axial	214.0
Bulones M 253M (A 490M) en tracción axial	262.0

- Los umbrales de fatiga para amplitud constante, definen el límite inferior para vida útil infinita.
- Dependen de la calificación a fatiga de cada detalle estructural.


 En ciertos casos, el beneficio resistente en la utilización de aceros de mayor resistencia se encuentra acotado por los umbrales de fatiga.







	Section 6	—Transvers	sely Loaded W	elded Attachments	
6.1 Base metal in a longitudinally loaded component at a transversely loaded detail (e.g. a lateral connection plate) attached by a weld parallel to the direction of primary stress and incorporating a transition radius R with the weld termination ground smooth.		do	por:	Near point of tangency of the radius at the edge of the longitudinally loaded component or at the toe of the weld at the weld termination if not ground smooth	CJP, PJP or Fillet R CJP, PJP or Fillet
R ≥ 24 in.	В	120 × 10 ⁸	16	Bis	-1, -01, 9,3
24 in. > R ≥ 6 in.	C	44×10^{8}	10	COL	AGIL.
6 in. > R ≥ 2 in.	D	22 × 10 ⁸	7		
2 in. > R	E	11 × 10 ⁸	4.5	46 -	
For any transition radius with the weld termination not ground smooth (Note: Condition 6.2, 6.3 or 6.4, as applicable, shall also be checked.)	E	11 × 10 ⁸	4.5		

• Elementos, generalmente secundarios, unidos transversalmente por soldadura a elementos principales. La calificación a fatiga depende, fundamentalmente, del radio de acuerdo en la introducción de la carga transversal.

Section 2—Connected Material in Mechanically Fastened Joints									
2.1 Base metal at the gross section of high-strength bolted joints	В	120 × 10 ⁸	16	Through the gross section					
designed as slip-critical			7.	near the hole					
connections with pretensioned			10						
high-strength bolts installed in		171			Some				
holes drilled full size or		400							
subpunched and reamed to size-	3.0	19							
e.g., bolted flange and web splices									
and bolted stiffeners. (Note: see	43/11				013				
Condition 2.3 for bolt holes				4.4					
punched full size; see Condition	1								
2.5 for bolted angle or tee section					30/2				
member connections to gusset or	40.59.50	A STATE OF THE PARTY OF THE PAR		- C/0"	-01 W				
connection plates.)	There's	11111							

 Elementos unidos mediante uniones atornilladas con bulones de alta resistencia y diseñadas como unión de deslizamiento crítico.

DE CARRE

	-		,	
	Section 7—Longi	tudinally Loaded \	Welded Attachments	
7.1 Base metal in a longitudinally loaded component at a detail with a length L in the direction of the primary stress and a thickness t attached by groove or fillet welds parallel or transverse to the direction of primary stress where the detail incorporates no transition radius:	anizado	por.	In the primary member at the end of the weld at the weld toe	
L < 2 in. 2 in. $\leq L \leq 12t$ or 4 in	C 44 × 1		iación	
L > 12t or 4 in. t < 1.0 in.	E N×	103 45	och	
r≥1.0 m.	E' 3.9 ×		6	
(Note: see Condition 7.2 for welded angle or tee section member connections to gusset or connection plates.)	4/			

• Elementos unidos al elemento principal mediante soldadura. Su calificación depende del largo en el sentido longitudinal del agregado (attachment) y del espesor de chapa del elemento a unir.

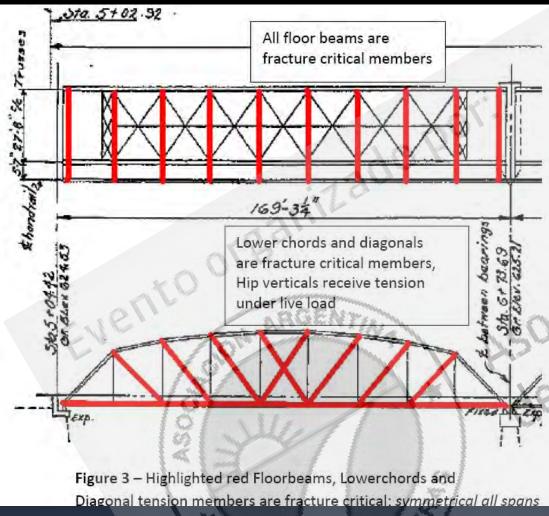
		Constant	Threshold	Potential					
		A	$(\Delta F)_{TH}$	Crack					
Description	Category	(ksi ³)	ksi	Initiation Point	Illustrative Examples				
		*							
Section 2—Connected Material in Mechanically Fastened Joints (continued)									
2.2 Base metal at the net section of	В	120×10^{8}	16	In the net	-				
high-strength bolted joints designed				section					
as bearing-type connections but			4	originating at	C. A.				
fabricated and installed to all				the side of the	V)				
requirements for slip-critical			100	hole					
connections with pretensioned high-		1.13							
strength bolts installed in holes		113			000				
drilled full size or subpunched and		4111							
reamed to size. (Note: see Condition									
2.3 for bolt holes punched full size;									
see Condition 2.5 for bolted angle or	1111								
tee section member connections to	100								
gusset or connection plates.)			Maria	9	10/10/10/10				
2.3 Base metal at the net section of all	D	22 × 10 ⁸	7	In the net	1000				
bolted connections in hot dipped		The war.		section					
galvanized members (Huhn and	1 21/14	466666666	Aug.	originating at					
Valtinat, 2004); base metal at the	1011			the side of the	The state of the s				
appropriate section defined in	13			hole or	3				
Condition 2.1 or 2.2, as applicable, of	Y 350			through the					
high-strength bolted joints with				gross section					
pretensioned bolts installed in holes	1000	3 4		near the hole,					
punched full size (Brown et al., 2007);		33113		as applicable					
and base metal at the net section of	1	3/13							
other mechanically fastened joints,	1 mil	3							
except for eyebars and pin plates, e.g.,				1 60 1					
joints using ASTM A307 bolts or				100					
non-pretensioned high-strength bolts.			1	Qu' 3					
(Note: see Condition 2.5 for bolted			1	16. 3					
angle or tee section member				1					
connections to gusset or connection		" Sandy Constant	- AR						
plates).	7	73 to 8	17/14						
	196	100							

Elementos
 unidos mediante
 platabandas y/o
 cubrejuntas
 abulonadas

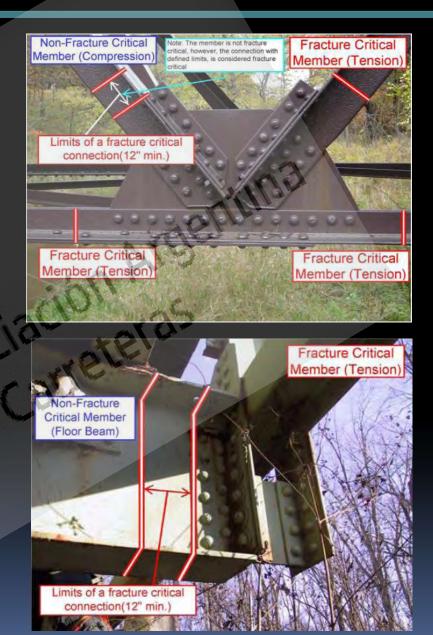
S	ection 3—W	elded Joints Jo	oining Compo	nents of Built-Up	Members
3.1 Base metal and weld metal in members without attachments built up of plates or shapes connected by continuous longitudinal complete joint penetration groove welds back-gouged and welded from the second side, or by continuous fillet welds parallel to the direction of applied stress.	В	120 × 10 ⁸	16	From surface or internal discontinuities in the weld away from the end of the weld	**************************************
3.2 Base metal and weld metal in members without attachments built up of plates or shapes connected by continuous longitudinal complete joint penetration groove welds with backing bars not removed, or by continuous partial joint penetration groove welds parallel to the direction of applied stress.	В,	61 × 10 ⁸	12	From surface or internal discontinuities in the weld, including weld attaching backing bars	
3.3 Base metal and weld metal at the termination of longitudinal welds at weld access holes made to the requirements of AASHTO/AWS D1.5, Article 3.2.4 in built-up members. (Note: does not include the flange butt splice).	D	22 × 10 ⁸		From the weld termination into the web or flange	
3.4 Base metal and weld metal in partial length welded cover plates connected by continuous fillet welds parallel to the direction of applied stress.	В	120 × 10 ⁸	16	From surface or internal discontinuities in the weld away from the end of the weld	

- Elementos unidos mediante usuales uniones soldadas (ala alma en perfiles doble T, cajón, etc.
- Cruces de uniones soldadas, platabandas, etc.

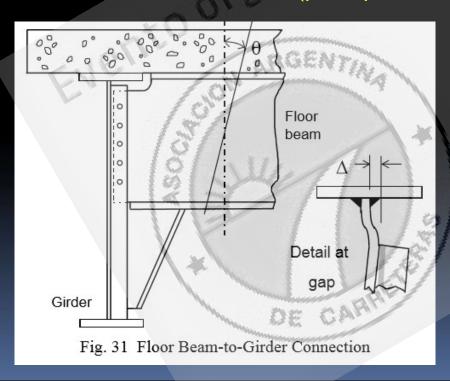
Table 6.6.1.2.3-1 (continued)—Detail Categories for Load-Induced Fatigue

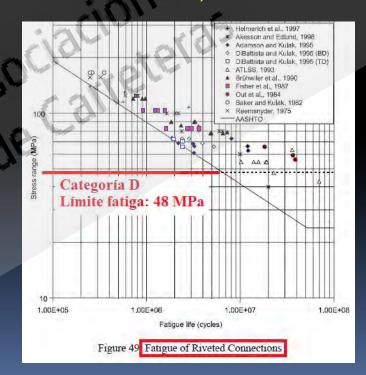

Description	Category	Constant A (ksi ³)	Threshold (ΔF) _{TH} ksi	Potential Crack Initiation Point	Illustrative Examples
		Section 9—M	liscellaneous (continued)	Snix
9.2 Nonpretensioned high-strength bolts, common bolts, threaded anchor rods, and hanger rods with cut, ground, or rolled threads. Use the stress range acting on the tensile stress area due to live load plus prying action when applicable. (Fatigue II) Finite Life (Fatigue I) Infinite Life	RGENY	3.9 × 10 ³ N/A	N/A	At the root of the threads extending into the tensile stress area	

 Bulones no pretensados de alta resistencia, bulones comunes, etc., accionados con cargas cíclicas de tracción, sumadas a la acción de palanca.


DE CARRE

ELEMENTOS DE FRACTURA CRÍTICA


 Elementos de fractura crítica. Su correcto dimensionamiento e inspección, son cruciales. En lo posible, es recomendable un diseño con criterio de redundancia.



OTROS FACTORES DE IMPORT. P/ LA EVALUAC. A FATIGA.

- Fatiga inducida por distorsión.
- Exigencias para el ensayo de Charpy a temperatura según las condiciones de servicio de la estructura. Indirectamente puede determinarse, por correlaciones, la tenacidad a fractura del material.
- La importante reducción de la capacidad portante en elementos estructurales unidos mediante roblones (principalmente, en puentes existentes).

BREVES CONSIDERACIONES Y CONCLUSIONES.

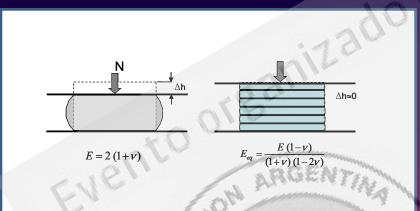
• CONSDIERACIONES Y CONCLUSIONES

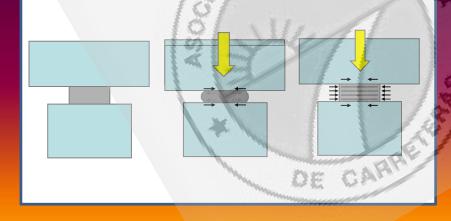
- No es técnicamente posible diseñar, verificar y/o reforzar un puente de acero o mixto, sin el análisis a fatiga.
- Para gran parte de los elementos estructurales componentes de puentes metálicos y mixtos (principalmente en elementos transversales y longitudinales secundarios), el estado de fatiga es el dimensionante.
- La propagación de fisuras por fatiga fue y sigue siendo una de las principales causas de fuera de servicio y colapsos parciales o totales en puentes metálicos.
- En el país existe una importante cantidad de puentes viales y ferroviarios metálicos que poseen su vida útil de servicio, técnicamente, caduca por no verificar a fatiga. Para la rehabilitación de puentes metálicos existentes con dicha problemática, debe generarse un sistema de inspección, ED y END y análisis estructural a fatiga y fractomecánico, para su adecuación a norma.
- Por lo indicado anteriormente, se concluye sobre la imperiosa necesidad de incorporar este análisis a la nueva normativa argentina de puentes de acero y mixtos.
- En la evaluación de la vida útil remanente de puentes metálicos existentes, se considera necesario compenetrar el análisis mediante la evaluación fractomecánica y de daño acumulado.

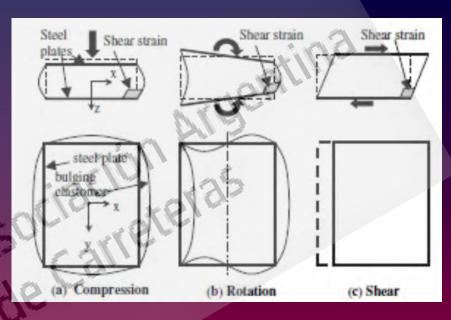
Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

El Deterioro de los puentes comienza en las juntas

El Deterioro de los puentes comienza en las juntas




Juntas que filtran generan corrosión y problemas


El Correcto Diseño de los Apoyos Prolonga su Vida Útil


Las placas de acero, hacen un efecto de zunchado y aumentan la rigidez de los apoyos

Es frecuente no considerar los giros en el diseño de los apoyos

Fallas en apoyos

Bibliografía útil para Apoyos

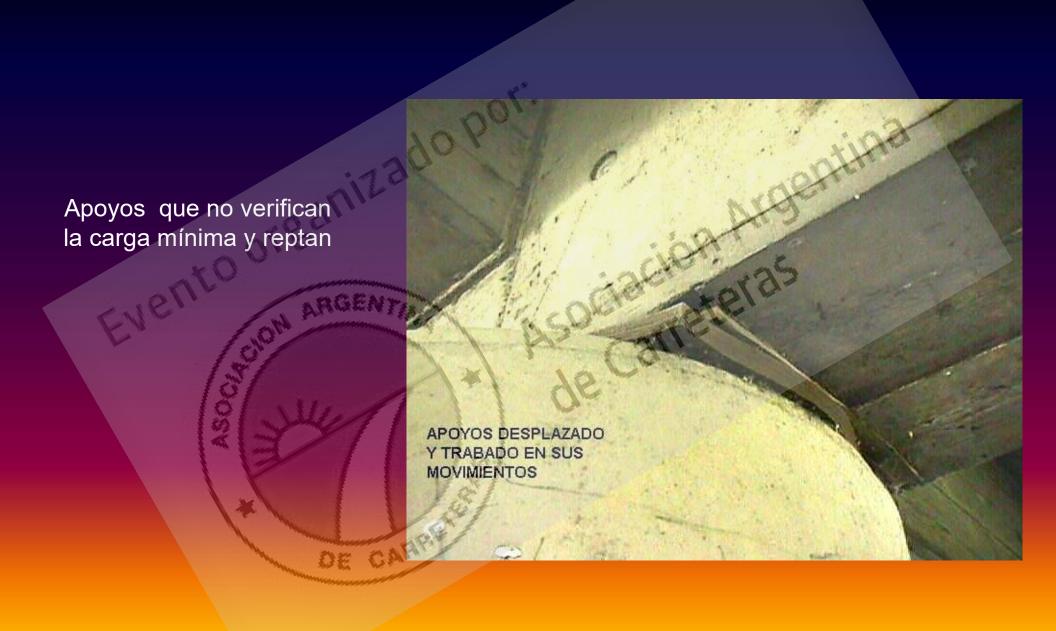
NATIONAL

COOPERATIVE HIGHWAY RESEARCH PROGRAM

Los apoyos fallan por distorsiones excesivas. El neopreno se despega de las placas de acero

Tension

debonding



delamination

Rotation Limits for Elastomeric Bearings

TRANSPORTATION RESEARCH BOARD
DE THE NATIONAL ACADEMIES

Algunos tipos de fallas muy frecuentes en nuestros puentes

Instalación defectuosa de apoyos de neopreno

Apoyos colocados al filo de los dados

JUNTAS Y APOYOS PARA PUENTES

Norma AASHTO LRFD 2012

Elementos destinados a:

- Resistir Cargas
- Acomodar Movimientos

Cumplir con los Estados Límite de:

- Servicio
- Resistencia
- Fatiga y Fractura
- Eventos Extremos

En SERVICIO:

No dañarse ni generar daños en otros elementos del puente

En RESISTENCIA y EXTREMOS:

No generar daños IRREPARABLES en otros elementos del puente

JUNTAS Y APOYOS PARA PUENTES

REQUISITOS GENERALES

Requisitos Básicos

- Acomodar / absorber los movimientos
- Adaptarse a la calzada
- Detallado para prevenir daños

Diseño Estructural

Resistir solicitaciones – Estados límite

Materiales

Correcta selección // Compatibilidad

Mantenimiento

Mínimo mantenimiento necesario

❖ SELECCIÓN

Número de Juntas

Mínimo necesario

- Estructuras continuas
- Puentes integrales

Ubicación de Juntas

General

Juntas abiertas

Juntas cerradas

Evitar las áreas públicas

- Drenaje / Residuos
- Protección de elementos y apoyos

* REQUISITOS DE DISEÑO

Consolidación del **Etapa constructiva Posibles movimientos** terraplén Etapa de Diseño W [mm] Aberturas de juntas Protección Armado **Tratamiento Anclajes** Placas deslizantes Placas de unión **Bulones** APERTURA DE LA JUNTA Placas dentadas 1/2 A 2" SUPERFICIE DE ANGULAR DE ACERO Voladizo PERNOS DE ANCLAJE Carga de rueda - ELR LOSA/ESTRIBO **Asentam. Diferencial**

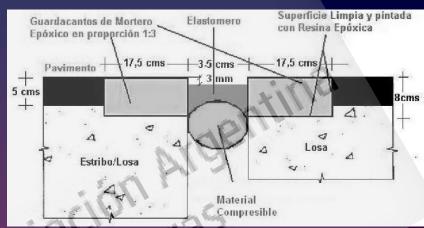
JORNADAS DE ACTUALIZACIÓN TÉCNICA EN PUENTES - JULIO 2017

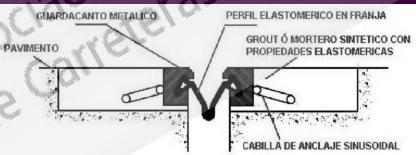
MEMBRANA DE DRENAJE

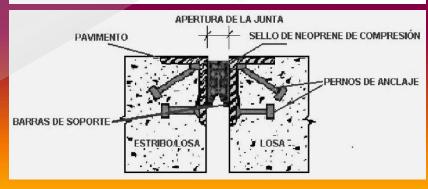
❖ CONSIDERACIONES ESPECÍFICAS para cada TIPO de JUNTA

TIPOS DE SISTEMAS DE JUNTAS						
Abjortes Aniz	Cerradas					
Abiertas	Moldeados In Situ	Preformados				
 Armada Placa Deslizante Placa Dentada 	• Sellos vaciados	 Sellos en Láminas y Franjas Sellos de Compresión y Celulares Sellos Elastoméricos Reforzados Sellos Modulares 				

- **CONSIDERACIONES ESPECÍFICAS para cada TIPO de JUNTA**
- Las juntas abiertas de tablero permiten el libre flujo de agua a través de la junta.

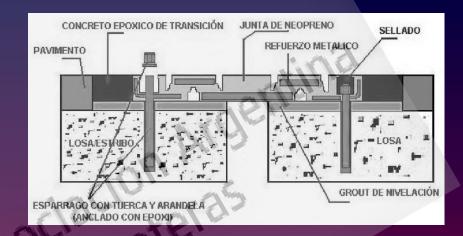

• Las juntas cerradas deben sellar la superficie del tablero, incluyendo los cordones, veredas y, donde sea necesario, parapetos y muros barrera. Deben prevenir la acumulación de agua y residuos.

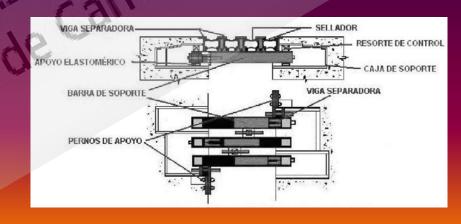

CONSIDERACIONES ESPECÍFICAS para cada TIPO de JUNTA (Cont.)


 Juntas cerradas – Moldeada in situ: Sellos vaciados

 Juntas cerradas – Preformadas: Sellos en láminas y franjas

 Juntas cerradas – Preformadas: Sellos de compresión y celulares





CONSIDERACIONES ESPECÍFICAS para cada TIPO de JUNTA (Cont.)

Juntas cerradas – Preformadas:
 Sellos elastoméricos reforzados

 Juntas cerradas – Preformadas: Sellos modulares – MBJS

REQUISITOS PARA LOS APOYOS DE PUENTES

Los apoyos pueden ser fijos o móviles, según lo requiera el diseño del puente.

La siguiente Tabla, se puede usar como guía al comparar los diferentes sistemas de apoyo:

Tipo de Apoyo	Movimiento		Rotación Alrededor del Eje Indicado del Puente		Resistencia a Cargas			
	Lon g.	Tran s.	Lon g.	Tran s.	Vert.	Long .	Tran s.	Vert.
Almohadilla Simple de Elastómero	S	S	S	S	L	L	L	L
Almohadilla Reforzada con Fibra de Vidrio	S	S	s	S	L	L	- 1	L
Almohadilla Reforzada con Fibra	UG	Û	U	U	U	E	L	S
Apoyo Elastomérico Reforzado con Acero	S	S	S	S	L	L	4	S
Apoyo Deslizante Plano	3	S	U	U	3	R	R	3
Apoyo Deslizante Esférico	R	R	S	S	S	R	R	S
Apoyo Deslizante Cilíndrico	R	R	U	S	U	R	R	S
Apoyo de Disco	R	R	S	S	L	S	S	S
Apoyo Cilíndrico Doble	R	R	S	S	U	R	R	S
Apoyo Tipo Pot	R	R	S	S	L	S	S	S
Apoyo Balancín	S	U	U	S	U	R	R	S
Apoyo de Rótula Articulada	U	U	Ü	S	U	S	R	S
Apoyo de Un solo Rodillo	S	U	U	S	U	U	R	S
Apoyo de Múltiples Rodillos	S	U	U	U	U	U	U	S

S = Adecuado

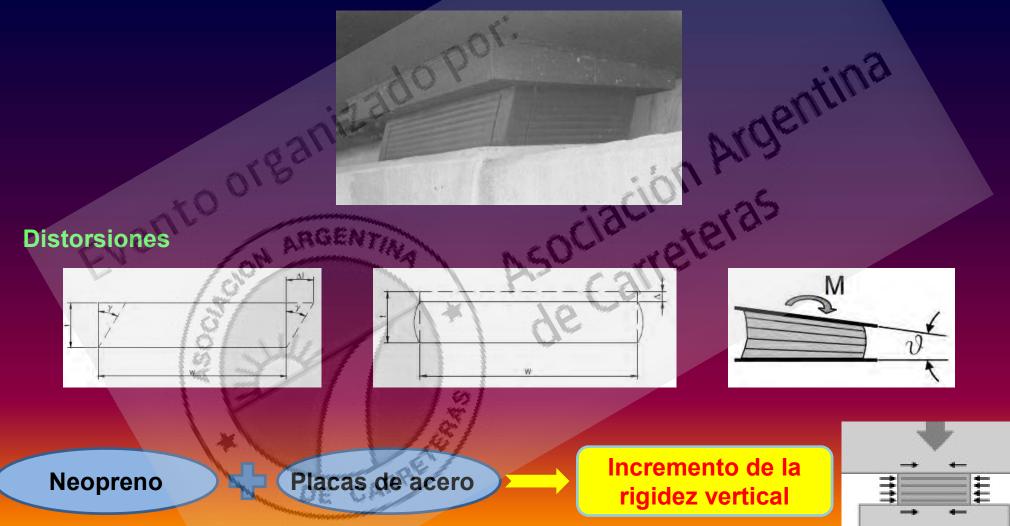
U = Inadecuado

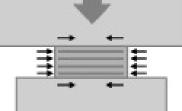
L = Adecuado para aplicaciones limitadas

R = Requiere consideración especial

Fabricación / Instalación / Ensayo / Transporte

AASHTO LRFD Bridge Construction Specifications


DISPOSICIONES ESPECIALES DE DISEÑO PARA APOYOS


- Alcances
- Propiedades de los materiales
- Requisitos geométricos
- Requisitos de diseño

- Carga de diseño
- Tensiones
- ✓ Deformaciones
- ✓ Estabilidad
- **✓** Refuerzos
- ✓ Etc.

DISPOSICIONES ESPECIALES DE DISEÑO PARA APOYOS

Apoyos Elastoméricos Reforzados con Acero

DISPOSICIONES ESPECIALES DE DISEÑO PARA APOYOS

Apoyos Elastoméricos Reforzados con Acero – Cálculo

1) Desplazamientos horizontales

- Variación Temperatura
- F. Reológicos
- Postensado
- Etc

Predimensionamiento:

- Número de capas
- Dimensión en planta

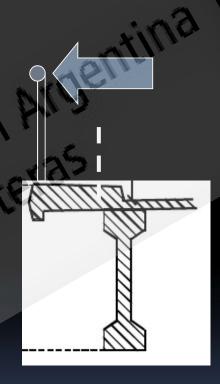
2) Carga vertical

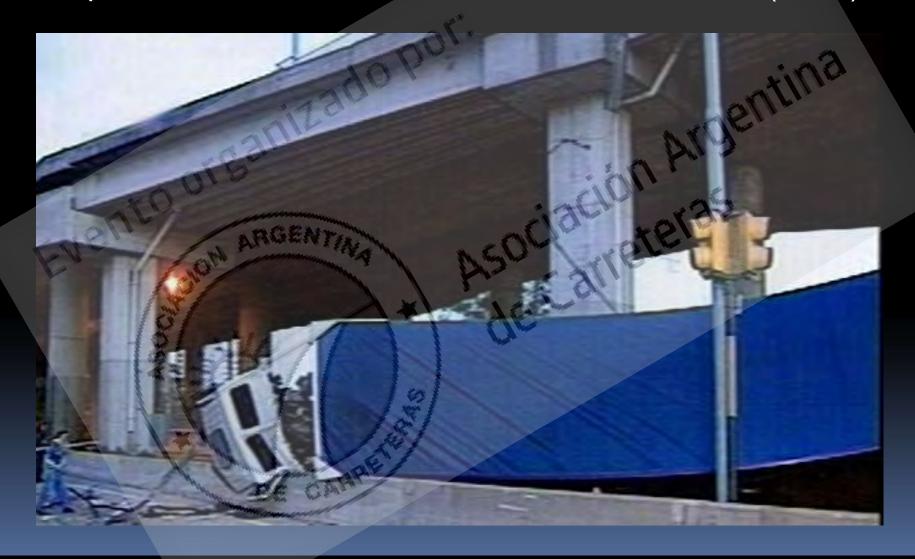
Verificaciones:

- Deformación y tensión por compresión
 - Compresión, rotación y corte del apoyo (Método A ó B)
- Estabilidad del apoyo
- Placas de acero del apoyo

IRAM ha comenzado en el 2015 el estudio de la Norma Nº 113091: «Apoyos de policioropreno para puentes y edificios»

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800





Bases para el Cálculo de Puentes de HºAº de la DNV (1952)

- c) Esfuerzo Transmitido por la Baranda
 - Para el cálculo del tablero, 80Kg/m normal a la baranda a la altura del pasamano.
 - Para el cálculo de la baranda 400kg/m a la altura del pasamano o 150kg/m si existe guardarrueda con baranda de seguridad.

DE CAR

CIRSOC 804 (MASH 2009)

Proteger la integridad de los ocupantes de vehículos erráticos y daños a terceros. Para ello debe minimizarse la posibilidad de;

- Caída de vehículos por:
 - Rotura de la defensa
 - Deformación de la defensa más allá del límite del tablero
 - Vuelco del vehículo hacia el vacío
 - Salto del vehículo sobre la defensa
- Desvío del vehículo hacia otros carriles
- Vuelco del vehículo
- •Deformaciones del habitáculo del vehículo que puedan ser lesivas para los ocupantes

COMPARACIÓN DE LA REGLAMENTACIÓN DNV-52 CON EL CIRSOC 804 CIRSOC 804 (MASH 2009)

CIRSOC 804 – NIVEL DE COMPORTAMIENTO DE LA DEFENSA

Nivel de comportamiento de la defensa	Nivel de ensayo MASH 2009	Propiedades de contención	Vehículo de ensayo		
Bajo	TL-3	Provistas para la contención de vehículos livianos. Para usar generalmente en estructuras bajas, de bajo nivel, en caminos rurales y áreas donde se espera un muy pequeño número de vehículos pesados mixtos y para un medio de baja velocidad.	Se requiere contener un nivel de impacto típico de un vehículo utilitario de 2,3 tn (vehículo liviano) a 100 km/h y un ángulo de impacto de 25°		
Regular	CJOH AR	Provistas para la contención de autos, utilitarios pesados y camiones livianos. Para usar generalmente en carreteras principales de alta velocidad y autopistas con una mezcla de vehículos pesados. Esta defensa es aplicable y apropiada para la mayoría de los emplazamientos de puentes.	Se requiere contener un nivel de impacto típico de un camión de 10,0 tn a 90 km/h y un ángulo de impacto de 15°		
Medio	TL-5	Provistas para la contención de la mayoría de los ómnibus y vehículos de masa media. Para usar generalmente en autovías de alta velocidad, carreteras principales arteriales y autopistas principales con un alto volumen de vehículos pesados mixtos y situaciones de riesgo en emplazamientos específicos.	Se requiere contener un nivel de impacto típico de un semi-remolque articulado de 36,0 tn a 80 km/h y un ángulo de impacto de 15°		

CIRSOC 804 – NIVEL DE COMPORTAMIENTO DE LA DEFENSA

Alto	TL-6	Provistas para situaciones de alto riesgo y la contención de vehículos pesados con alto centro de gravedad. Para usar generalmente en rutas con alto volumen de vehículos pesados mixtos y velocidades máximas permitidas tales como en autovías con pendientes transversales variables y radios de curvatura reducidos.	Se requiere contener un nivel de impacto típico de un vehículo tipo tanque de 36,0 tn (vehículo rígido con alto centro de gravedad) a 80 km/h y un ángulo de impacto de 15°
Especial	por encima de TL-6	Provistas para emplazamientos específicos, condiciones inusuales y ubicaciones críticas donde se debe evitar la penetración debido a un muy alto centro de gravedad y/o vehículos pesados bajo condiciones de impacto variables	Se requiere contener un nivel de impacto típico de un semi-remolque articulado de 44,0 tn a 100 km/h y un ángulo de impacto de 15°. No hay defensa calificada más alto que TL-6 en MASH 2009

COMPARACIÓN DE LAS NORMAS MODERNAS PARA DEFENSAS VEHICULARES

		Alexandria				
EUA (MASH)	EUA (NCHRP 350)	Europa (EN 1317)	Velocidad de Impacto km/h	Angulo de Impacto	Peso del Vehículo kg	Energía del Impacto kJ
OUL	128	H1	70	15	10000	126
	TL-3		100	25	2000	138
TL-3			100	25	2270	156
C)	TL-4		80	15	8000	132
TL-4	July		90	15	10000	209
		H2	70	20	13000	287
		H4a	65	20	30000	570
TL-5	TL-5		80	15	36000	595
TL-6	TL-6	MARRE	80	15	36000	595

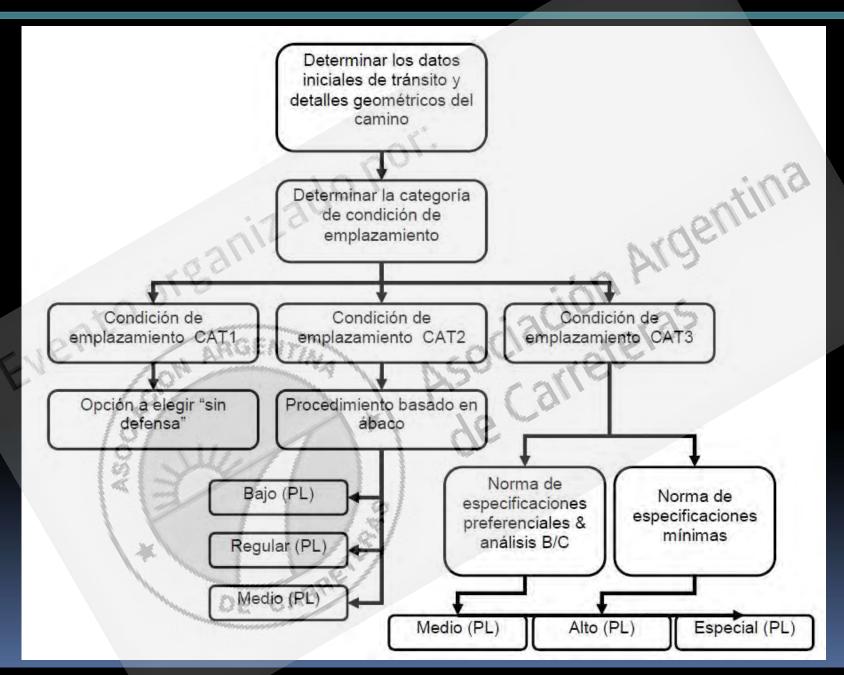
COMPARACIÓN DE LAS NORMAS MODERNAS PARA DEFENSAS VEHICULARES

NCHRP 350 (1993)

MASH 2009

Selección de la Defensa Vehicular a Emplazar

En la actualidad el nivel de seguridad de las defensas vehiculares es determinado por el propietario del puente (ej. las Vialidades), en base a criterios cualitativos


- Selección de niveles de comportamiento de defensas basado en el trabajo Standarised Bridge Barrier Design (Austroads Research Report AP-R445-13). Este método se sustenta en parámetros cuantitativos, y determinan unívocamente el nivel mínimo requerido, evitando decisiones subjetivas.
- Comentarios referentes a requisitos generales para sistemas de defensas y a transición entre los diferentes niveles de comportamiento de las defensas, tomados del mismo reporte
- Pueden usarse sólo defensas previamente ensayadas con vehículos reales bajos condiciones estandarizadas (MASH 2009)

13.7.2.2. Categorías de la Condición de Emplazamiento

Las condiciones de emplazamiento están clasificadas en tres categorías como sigue:

- CAT1: para emplazamientos que satisfacen todos los criterios para el caso sin defensa del Artículo 13.7.2.3.
- CAT2: para emplazamientos con niveles de riesgo medios a bajos, los cuales satisfacen los criterios especificados en el Artículo 13.7.2.4.
- CAT3: para emplazamientos con niveles de riesgo medios a altos y/o que tienen condiciones especiales como las especificadas en el Artículo 13.7.2.5.

13.7.2.3. Criterios para la Condición de Emplazamiento CAT1

Las defensas de tránsito vehicular se pueden omitir cuando la provisión de defensas impide el paso de vehículos especiales con sobreancho, o las defensas pueden ser frecuentemente dañadas por arrastres pesados o ambos, y se aplican la totalidad de los siguientes criterios para condición de emplazamiento CAT1:

- 1. La rasante del puente o alcantarilla está a menos de 1,50 m por encima del terreno natural.
- 2. Los volúmenes de tránsito son menores que 150 vehículos por día.

DE CARP

13.7.2.3. Criterios para la Condición de Emplazamiento CAT1

- 3. Puentes con una alineación esencialmente recta (por ejemplo, con un radio de curvatura horizontal mayor de 1500 m) y en los que los accesos carreteros tienen una distancia de visibilidad mayor que la distancia de frenado.
- 4. La distancia entre cordones no es menor que 7,90 m para un puente de dos carriles ni de 4,70 m para un puente de un solo carril.
- 5. La ubicación no anticipa tránsito peatonal.
- 6. Cualquier tipo de agua debajo del puente normalmente tiene menos de **1,20 m** de profundidad.

13.7.2.5. Criterios para la Condición de Emplazamiento CAT3

Un emplazamiento se considerará que está en condición de emplazamiento CAT3 cuando cumpla cualquiera de los siguientes criterios:

- emplazamiento específico, condiciones inusuales y ubicaciones críticas tal como especifica el Propietario.
- 2. ubicaciones donde es esencial evitar la penetración por parte de los vehículos especificados por el Propietario, bajo condiciones de impacto.
- 3. puentes en carreteras con clases especiales de vehículos pesados tales como vehículos de gran masa y alto centro de gravedad.

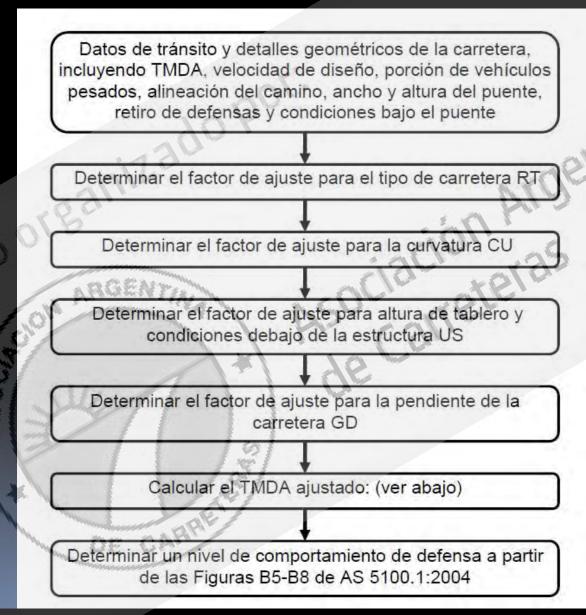
13.7.2.5. Criterios para la Condición de Emplazamiento CAT3

- 4. carreteras con nivel de tránsito comercial mayor o igual a **3000** vehículos pesados por día por calzada y están en situación de alto riesgo.
- 5. carreteras con un volumen de ómnibus mayor o igual a **150** buses por día por calzada en situación de alto riesgo o en cualquiera de las siguientes situaciones:
 - a) puentes de más de 10 m de altura
 - b) puentes encima de agua de más de 3 m de profundidad (flujo normal)
 - c) puentes con curvas horizontales con radio de 600 m o menor

13.7.2.7. Método CAT2 – Procedimiento Basado en Gráficos

Este procedimiento se usa para seleccionar un nivel de comportamiento de defensa entre Bajo, Regular y Medio para una condición de emplazamiento CAT2 usando datos de tránsito del emplazamiento específico y detalles geométricos de la carretera tales como pendiente de la carretera, curvatura horizontal y condiciones debajo de la estructura.

13.7.2.7. Método CAT2 – Procedimiento Basado en Gráficos


Determinar TMDA y Porción de Vehículos Comerciales

Para el método basado en gráficos, el TMDA debe tomarse como el total estimado para el primer año después de la construcción de todos los carriles del puente. El crecimiento proyectado del tránsito supuesto es 2% por año durante 30 años. Para emplazamientos con una velocidad de diseño de 80 km/h o mayor y TMDA del año de construcción mayor de 10000 vehículos por día por carril (vpdpc), el TMDA del año de construcción se puede limitar a 10000 vpdpc, para tener en cuenta el efecto de las congestiones de tránsito sobre las velocidades de tránsito.

Se debe notar que para tasas de crecimiento distintas del 2% anual, el TMDA del año de construcción para el uso en este procedimiento, se puede ajustar dividiendo el TMDA de los 30 años después de la construcción por (1 + 2%)30 = 1,81. El error en usar esta estimación es aceptable y dentro de las suposiciones de esta metodología.

13.7.2.7. Método CAT2 – Procedimiento Basado en Gráficos

TMDA ajustado = TMDA × RT × GD × CU × US

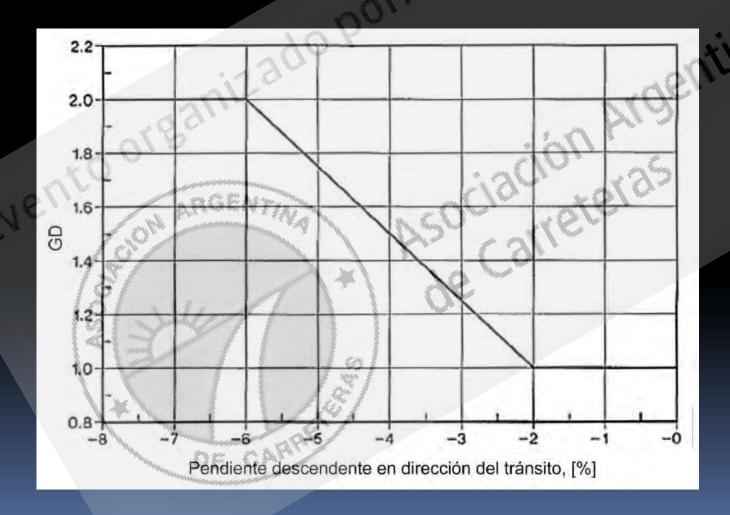
Donde:

RT = factor de ajuste del tipo de camino, derivado de Tabla 13.7.2.7.2

GD = factor de ajuste de la pendiente del camino, tomado de Figura 13.7.2.7.2.2

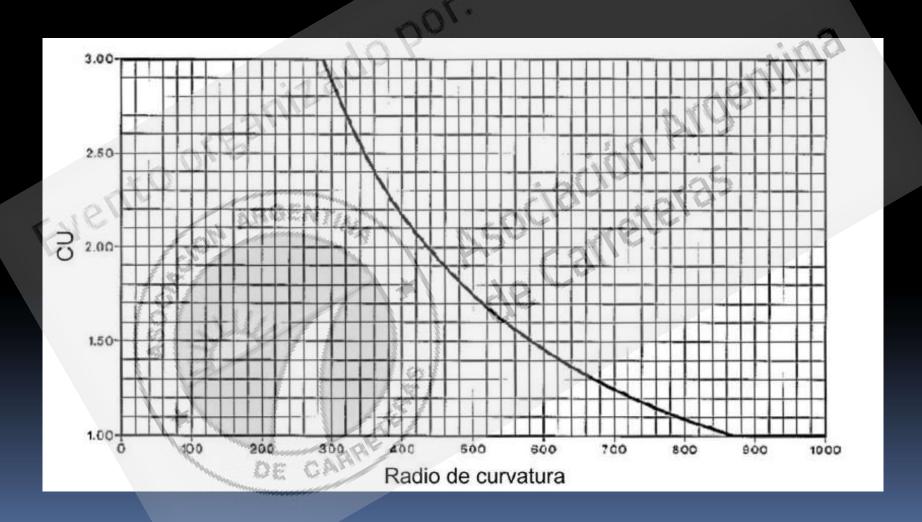
CU = factor de ajuste de la curvatura del camino, tomado de Figura 13.7.2.7.2.3

US = factor de ajuste para la altura del tablero y las condiciones debajo de la estructura, tomado de Figura 13.7.2.7.2.4

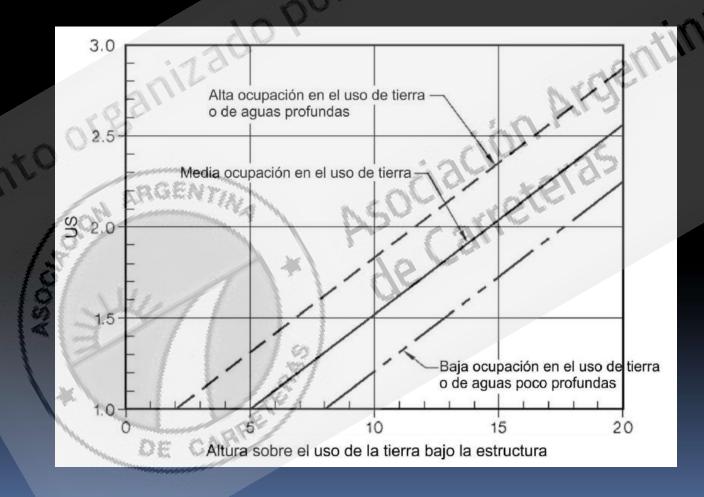

 $TMDA \ ajustado = TMDA \times RT \times GD \times CU \times US$

DE CARR

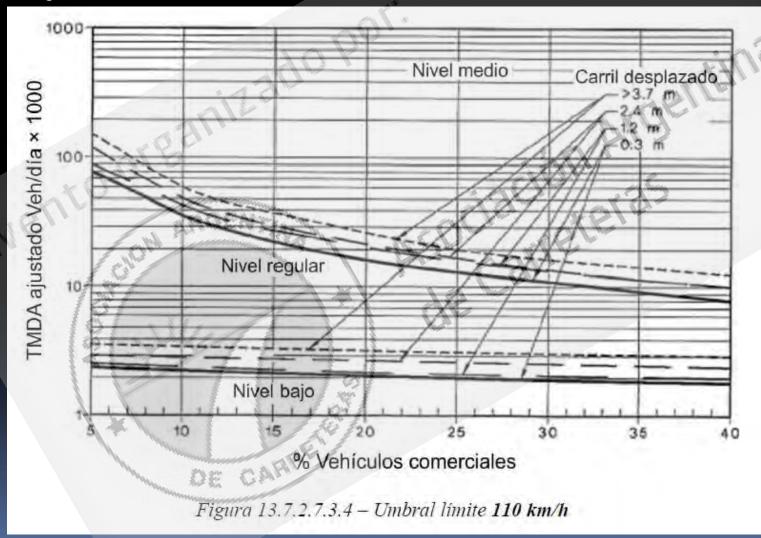
Tipo de camino	TMDA	Número de carriles*	Factor de ajuste RT	
Una dirección**	Basado en tránsito de una dirección	1 ó más	2,0	
Dos direcciones dividido	Basado en tránsito de dos direcciones	2 ó más	1,0	
Dos direcciones sin división	Basado en tránsito de dos direcciones	1a4	1,5	
Dos direcciones sin división	Basado en tránsito de dos direcciones	5 ó más	1,0	



TMDA ajustado = TMDA × RT × GD × CU × US



 $TMDA \ ajustado = TMDA \times RT \times GD \times CU \times US$



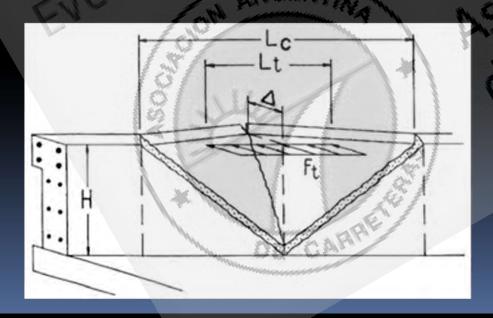
 $TMDA \ ajustado = TMDA \times RT \times GD \times CU \times US$

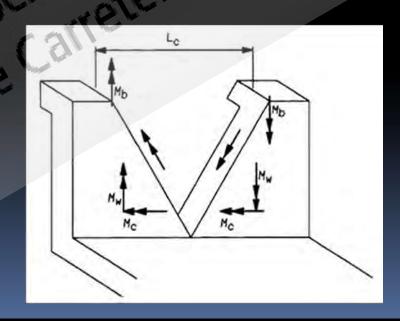
$TMDA \ ajustado = TMDA \times RT \times GD \times CU \times US$

13.7.1.2. Defensas de Aproximación al Puente

Se debe proveer un sistema de defensa de protección al inicio de todas las defensas de puentes en las zonas rurales con tránsito de alta velocidad.

Un sistema de defensa de aproximación al puente debe incluir una transición desde el sistema de defensa de protección hasta el sistema de defensa rígido del puente, con capacidad de proporcionar resistencia lateral ante un vehículo errante. El borde de ataque del sistema de defensa de protección, en la aproximación al puente, deberá tener una terminal apta para choque.


13.7.1.2. Defensas de Aproximación al Puente



A13.3. PROCEDIMIENTO DE DISEÑO DE LAS DEFENSAS UTILIZADAS COMO PROTOTIPOS DE ENSAYO

Para los muros de hormigón armado y pretensado se podrán utilizar análisis por líneas de fluencia y diseño por resistencia. La resistencia nominal de la defensa frente a la carga transversal, Rw, se puede determinar utilizando un enfoque por líneas de fluencia de la siguiente manera:

A13.3. PROCEDIMIENTO DE DISEÑO DE LAS DEFENSAS UTILIZADAS COMO PROTOTIPOS DE ENSAYO

$$R_{w} = \left(\frac{2}{2 L_{c} - L_{t}}\right) \left(8 M_{b} + 8 M_{w} + \frac{M_{c} L_{c}^{2}}{H}\right) \qquad L_{c} = \frac{L_{t}}{2} + \sqrt{\left(\frac{L_{t}}{2}\right)^{2} + \frac{8 H \left(M_{b} + M_{w}\right)}{M_{c}}}$$

$$L_c = \frac{L_t}{2} + \sqrt{\left(\frac{L_t}{2}\right)^2 + \frac{8 H \left(M_b + M_w\right)}{M_c}}$$

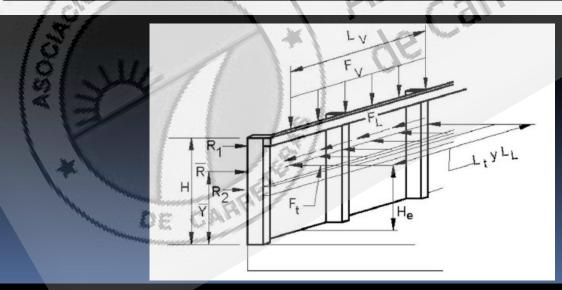
Ft = fuerza transversal especificada en la Tabla A13.2-1 que se supone actuando en la parte superior de un muro de hormigón [kN]

H = altura del muro [m]

Lc = longitud crítica del patrón de falla por líneas de fluencia [m]

Lt = longitud de distribución longitudinal de la fuerza de impacto Ft [m]

Rw = resistencia transversal total de la defensa [kN]


Mb = resistencia adicional a flexión de la viga acumulativa con Mw, si corresponde, en la parte superior del muro [kN·m]

Mc = resistencia a flexión de los muros en voladizo respecto de un eje paralelo al eje longitudinal del puente [kN·m/m]

Mw = resistencia a flexión del muro respecto de su eje vertical [kN·m]

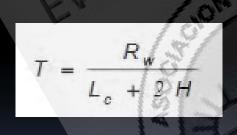
A13.2. FUERZAS NOMINALES PARA LAS DEFENSAS DE TRÁNSITO VEHICULAR

	Niveles de Ensayo para las Defensas			
Fuerzas nominales y simbologías	Bajo	Regular	Medio	Alto
Transversal F _t [kN]	240	300	600	750
Longitudinal F _L [kN]	100	100	200	250
Vertical descendente F _v [kN]	22	100	300	350
Lt y LL [m]	1,10	1,20	2,40	2,40
L _v [m]	5,50	6,00	12,00	12,00
H _e (min.)[m]	0,70	0,90	1,20	1,40
Minima altura de la defensa H [m]	0,70	0,90	1,20	2,30

A13-4 Diseño del Voladizo del Tablero

Los voladizos laterales del tablero de un puente se proyectan considerando separadamente los siguientes casos de diseño:

- •Caso de Diseño 1: fuerzas transversales y longitudinales especificadas en el Artículo A13.2 Combinación de cargas correspondiente al Estado Límite Evento Extremo II
- •Caso de Diseño 2: fuerzas verticales especificadas en el Artículo A13.2 Combinación de cargas correspondiente al Estado Límite Evento Extremo II
- •Caso de Diseño 3: cargas que actúan sobre el voladizo lateral, especificadas en el Artículo 3.6.1 Combinación de cargas correspondiente al Estado Límite Resistencia I

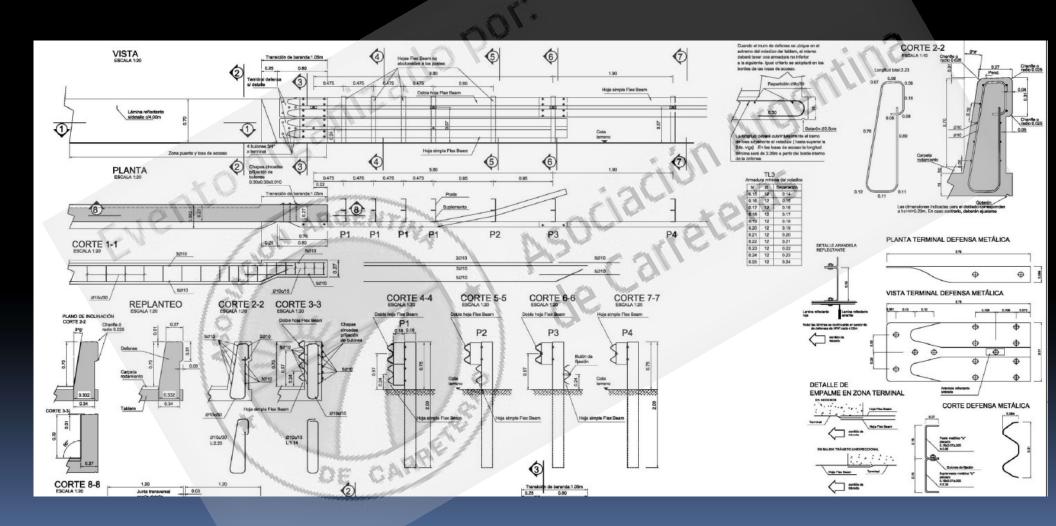

Para los Casos de Diseño 1 y 2, el factor de carga para la carga permanente, χρ, deberá ser igual a 1,0

A13.4.2. Tableros que Soportan Muros de Hormigón

DE CARP

Para el Caso de Diseño 1, el voladizo lateral del tablero se debe diseñar para proveer una resistencia a la flexión, Ms en [kN·m/m] que, actuando conjuntamente con la fuerza de tracción T en [kN/m], aquí especificada, sea mayor a Mc correspondiente al muro en su base. La fuerza de tracción axial, T, se puede tomar de la siguiente manera:

Donde:

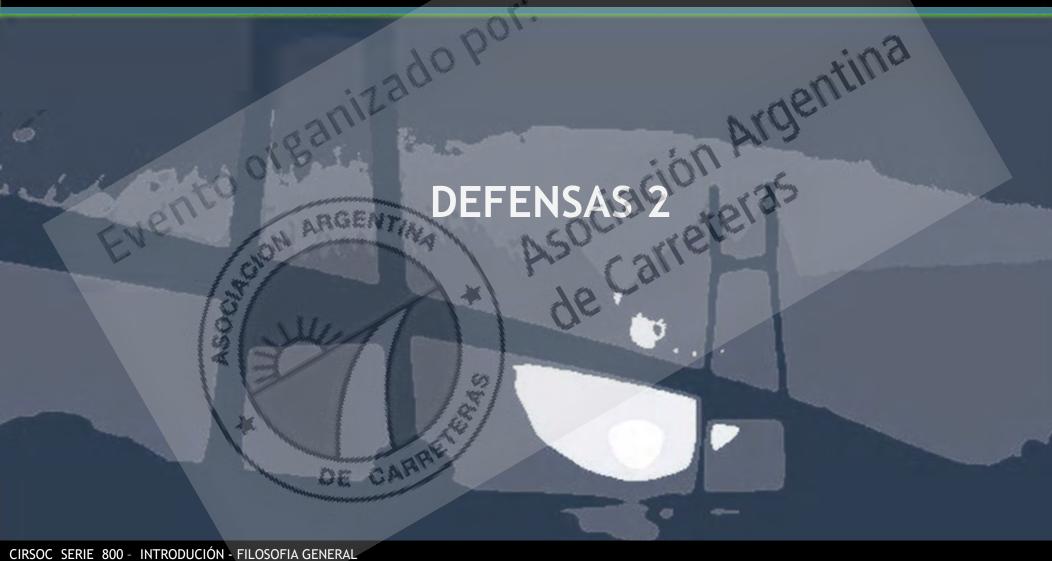

Rw = resistencia del muro especificada en el Artículo A13.3.1 [kN]

Lc = longitud crítica del patrón de falla por líneas de fluencia [m]

H = altura del muro [m]

T = fuerza de tracción por unidad de longitud del tablero [kN/m]

APÉNDICE B13 – PLANOS TIPO DE DEFENSAS **VEHICULARES**



APÉNDICE B13 – PLANOS TIPO DE DEFENSAS VEHICULARES

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

Introducción

Actualmente los muertos y heridos en los puentes Una realidad incontrastable: se producen por ineficiencia de las defensas

- Accidentes Letales: salida de la vía
- Mayor frecuencia y letalidad: en puentes
- Casos repetidos (Puntos Negros)
- Puente Angosto
- Trazado: curva y contra-curva
- ción Argentina Eliminación de banquina al llegar al puente (puentes angostos)
- Falta de defensas en accesos: no existen o no empalman correctamente
- Empalme de defensas flexible con rígida en los accesos
- Vereda antes de la defensa
- Defensa mal fijada para que no se rompa el tablero
- Búsqueda del culpable: Según Autoridades, Policía, Peritos y Medios
 - Conductor o Falla Mecánica

Objetivos de una defensa

- Protección de los ocupantes de un vehículo que impacta contra la defensa,
- Protección de otros vehículos próximos al lugar de impacto,
- Protección de las personas y propiedades que se encuentran en las carreteras y otras áreas debajo de la estructura,
- Posibles mejoras futuras de las defensas
- Relación costo-beneficio de las defensas, y
- Estética y visibilidad de los vehículos circulantes.

DE CAR

Informe NCHRP 350 y Manual MASH 2009

National Cooperative Highway Research Program (TRB)

Manual for Assesing Safety Hardware (AASHTO)

The bridge railing performance need not be identical over the whole highway network. New railing designs should match site needs leading to a multiple test level concept, as described in NCHRP Report 350 or AASHTO's Manual for Assessing Safety Hardware.

All highway safety hardware accepted prior to the adoption of AASHTO. Manual for Assessing Safety Hardware (MASH), using criteria contained in NCHRP Report 350, may remain in place and may continue to be manufactured and installed. Highway safety hardware accepted using NCHRP Report 350 criteria is not required to be retested using MASH criteria. New highway safety hardware not previously evaluated must utilize MASH for testing and evaluation.

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800

AASHTO (Y EL FUTURO CIRSOC 80#) INTRODUCE EL FORMATO LRFD EN EL ANÁLISIS DE LAS FUNDACIONES

10.1 CAMPO DE APLICACIÓN

Los requisitos de esta sección se deberán aplicar para el diseño de zapatas, pilotes hincados y pilotes perforados.

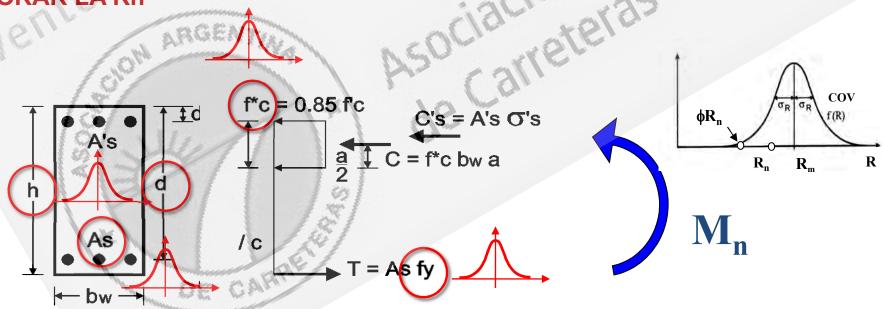
Si se han de seleccionar procedimientos de cálculo de resistencia diferentes a los especificados en el presente documento, se deberá considerar la base probabilística de estas Especificaciones, la cual produce una combinación interrelacionada de las cargas, los factores de carga, los factores de resistencia y la confiabilidad estadística. Se pueden utilizar otros métodos, especialmente si estos métodos han sido reconocidos localmente y se consideran adecuados para las condiciones regionales, siempre que se considere la naturaleza estadística de los factores indicados anteriormente a través del uso consistente de la teoría de la confiabilidad y que sean aprobados por el Propietario.

AASHTO(Y EL FUTURO CIRSOC 80#) INTRODUCE EL FORMATO LRFD EN EL ANÁLISIS DE LAS FUNDACIONES

 OTROS CUERPOS DE CONOCIMIENTO EN OBRAS CIVILES ADOPTAN EL FORMATO (USACE, AREMA)

 SURGEN VARIOS ASPECTOS PARTICULARES, QUE HAN SIDO ANALIZADOS EXHAUSTIVAMENTE EN EL ENTORNO AASHTO (NCHRP Pubs, etc)

 UNA PREMISA FUNDAMENTAL DEL FORMATO LRFD ES MANTENER LAS COMBINACIONES DE MAYORACIÓN DE ACCIONES


 \circ EL PRINCIPAL OBJETIVO RESULTA, ENTONCES, CALIBRAR LOS VALORES DE " φ "

PARTICULARIDADES DEL FORMATO LRFD EN FUNDACIONES

 SURGEN ALGUNAS DIFERENCIAS MARCADAS RESPECTO A LA CALIBRACIÓN PARA ESFUERZOS INTERNOS EN ELEMENTOS ESTRUCTURALES

 FLEXIÓN SIMPLE: ÚNICO MÉTODO PARA OBTENER Mn, Y UN ÚNICO φ PARA MINORAR LA Rn

PARTICULARIDADES DEL FORMATO LRFD EN FUNDACIONES

- O CAPACIDAD DEL SUELO: EXISTEN VARIOS MÉTODOS PARA DETERMINAR LA RN DE UN MISMO TIPO DE ROTURA. CADA UNO TIENE SUS PROPIOS PARÁMETROS ESTADÍSTICOS (FD= λ , COV), QUE CONDUCIRÁN A DIFERENTES ϕ .

Tabla 10.5.5-1 - Factores de Resistencia para el Estado Límite de Resistencia de las Fundaciones Superficiales

MÉTODO/SUELO/CONDICIÓN	
Arena: Procedimiento semiempírico utilizando datos de ensayos SPT Procedimiento semiempírico utilizando datos de ensayos de penetración (CPT) Método racional -	0,45 0,55
usando of estimado a partir de datos de ensayos SPT	0,35 0,45
	Arena: Procedimiento semiempírico utilizando datos de ensayos SPT Procedimiento semiempírico utilizando datos de ensayos de penetración (CPT) Método racional -

METODOLOGÍAS DE CALIBRACIÓN

(1) AJUSTE DE FACTORES PARA OBTENER EL FS DE SERVICIO

LRFD: Qu =
$$\phi$$
 Rn ; ASD: Qs = Rn/FS
Qu = γ_{prom} * Qs \rightarrow ϕ Rn / γ_{prom} = Rn/FS \rightarrow ϕ = γ_{prom} / FS

Ejemplo:

$$\sigma_{\text{adm}}$$
 = 100 kPa = Qs; FS = 3 Qu = 1.25 DC * 1.75 L; con DC/L = 2 $\rightarrow \gamma_{\text{prom}}$ = (2*1.25 + 1.75)/3 = 1.42

$$\rightarrow \phi = \gamma_{\text{prom}} / \text{FS} = 1.42 / 3 = \phi = 0.47$$

PROBLEMA: ES UN SIMPLE JUEGO ALGEBRAICO, QUE NO RESPETA EL CONCEPTO BÁSICO DEL LRFD: CALIBRAR LOS FACTORES PARA OBTENER UNA FIABILIDAD DETERMINADA (β objetivo), ES DECIR, UNA PROBABILIDAD DE FALLA UNIFORME

VENTAJA: MANTIENE EL STATUS QUO

METODOLOGÍAS DE CALIBRACIÓN

o (2) ANÁLISIS DE FIABILIDAD, PARA:

SEPARAR INCERTIDUMBRE EN ACCIONES (S) Y RESISTENCIAS (R)

ASEGURAR UN NIVEL DE FIABILIDAD ACEPTABLE e INDEPENDIENTE DE FACTORES SUBJETIVOS (MÉTODO DE CÁLCULO GEOTÉCNICO, LUCES, TIPO DE PUENTES, ETC)

REQUIERE:

- ESTABLECER CONDICIONES MÍNIMAS DE EXPLORACIÓN DEL SUBSUELO (CONSIDERAR CORRECCIONES POR FACTORES LOCALES!)
- CONTAR CON BASES DE DATOS EXPERIMENTALES
- DEFINIR LOS DIFERENTES MÉTODOS A USAR PARA DETERMINAR LA Rn

EN LA PRÁCTICA, AASHTO PRÉSENTA FACTORES ϕ QUE CONSIDERAN AMBOS ENFOQUES.

AASHTO 2012 - CAPÍTULO 10 - FUNDACIONES

CONTENIDO

10.1	CAMPO DE APLICACIÓN	10-1
10.2	DEFINICIONES	10-1
10.3	SIMBOLOGÍA	10-2
10.4	DETERMINACIÓN DE LAS PROPIEDADES DEL SUELO	10-8
10.5	ESTADOS LÍMITE Y FACTORES DE RESISTENCIA	10-13
10.6	ZAPATAS	10-19
10.7	PILOTES HINCADOS	10-60
10.8	PILOTES PERFORADOS	10-93
	Gill At de	
A10.1	INVESTIGACIÓN	23
A10.2	DISEÑO DE LAS FUNDACIONES	28
A10.3	REQUISITOS ESPECIALES PARA LOS PILOTES	32

ESTADOS LÍMITE PARA FUNDACIONES:

LOTADO LÍMITE DE RESISTENCIA

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS

CARRE

ESTADOS LÍMITE PARA FUNDACIONES

10.5.2 ESTADOS LÍMITE DE SERVICIO

- Asentamientos,
- Desplazamientos laterales
- Estabilidad global
- –os) Socavación para la crecida de diseño (100 años)

10.5.3 ESTADO LÍMITE DE RESISTENCIA

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS

ESTADOS LÍMITE PARA FUNDACIONES:

10.5.2 ESTADOS LÍMITE DE SERVICIO

10.5.3 ESTADO LÍMITE DE RESISTENCIA

- Resistencia
- Pérdida de apoyo (vertical u horizontal) por socavación para la crecida de diseño

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS

CARR

ESTADOS LÍMITE PARA FUNDACIONES:

10.5.2 ESTADOS LÍMITE DE SERVICIO

10.5.3 ESTADO LÍMITE DE RESISTENCIA

- Resistencia
- Pérdida de apoyo (vertical u horizontal) por socavación para la crecida de diseño

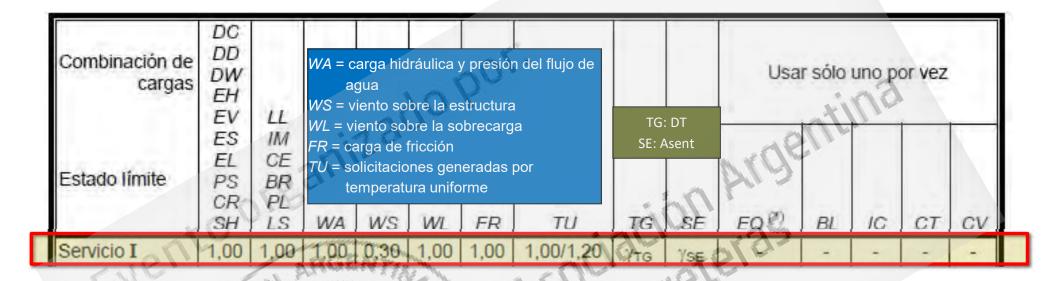
Fundaciones Superficiales: Capacidad de Carga – Posición Resultante – Deslizamiento Pilotes Hincados: Capacidad de Carga (Individual y Grupo) – Tracción- Resistencia Lateral Pilotes Excavados: Ídem

Micropilotes: Ídem

Microphotes, ident

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS

DE CARP


ESTADOS LÍMITE PARA FUNDACIONES

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS Socavación para la crecida de verificación (500 años) Choque de vehículos y embarcaciones Sismo (incluyendo liques

CARR

10.5.2 ESTADOS LÍMITE DE SERVICIO - COMBINACIONES

DC = peso propio compestructurales

y agregados no estructurales

DD = fricción negativa

DW = peso propio de las sups rodamiento

e instalaciones para servicios

EH = empuje horizontal del suelo

EV = presión vertical del peso propio del suelo de relleno

ES = sobrecarga de suelo

EL = diversas tensiones residuales del proceso

constructivo

PS = fuerzas secundarias de postensado

CR = solicitaciones generadas por fluencia lenta

SH = solicitaciones generadas por contracción

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una

embarcación

10.5.2 ESTADOS LÍMITE DE SERVICIO - ϕ

$\phi = 1$

(Salvo para Análisis de Estabilidad Global s/ Artículo 11.6.2.3)

EJEMPLO:

 C10.6.2.6.1

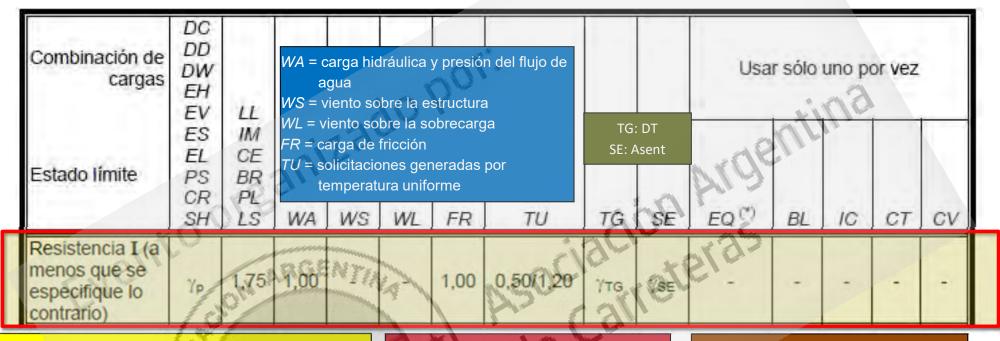

Unless more appropriate regional data are available, the presumptive values given in Table C10.6.2.6.1-1 may be used. These bearing resistances are settlement limited, e.g., 1.0 in., and apply only at the service limit state.

Table C10.6.2.6.1-1—Presumptive Bearing Resistance for Spread Footing Foundations at the Service Limit State Modified after U.S. Department of the Navy (1982)

	1 11/2	Bearing Resistance (ksf)	
Type of Bearing Material	Consistency in Place	Ordinary Range	Recommended Value of Use
Fine to medium sand, silty or clayey medium to coarse sand (SW, SM, SC)	Very dense Medium dense to dense Loose	6-10 4-8 2-4	6 5 3
Fine sand, silty or clayey medium to fine sand (SP, SM, SC)	Very dense Medium dense to dense Loose	6-10 4-8 2-4	6 5 3
Homogeneous inorganic clay, sandy or silty clay (CL, CH)	Very dense Medium dense to dense Loose	6-12 2-6 1-2	8 4 1
Inorganic silt, sandy or clayey silt, varved silt-clay- fine sand (ML, MH)	Very stiff to hard Medium stiff to stiff Soft	4-8 2-6 1-2	6 3 1

10.5.3 ESTADO LÍMITE DE RESISTENCIA - COMBINACIONES

DC = peso propio compestructurales

y agregados no estructurales

DD = fricción negativa

DW = peso propio de las sups rodamiento

e instalaciones para servicios

EH = empuje horizontal del suelo

EV = presión vertical del peso propio del suelo de relleno

ES = sobrecarga de suelo

EL = diversas tensiones residuales del proceso

constructivo

PS = fuerzas secundarias de postensado

CR = solicitaciones generadas por fluencia lenta

SH = solicitaciones generadas por contracción

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una

embarcación

10.5.3 ESTADO LÍMITE DE RESISTENCIA – φ – FUNDACIONES SUPERFICIALES

Table 10.5.5.2.2-1—Resistance Factors for Geotechnical Resistance of Shallow Foundations at the Strength Limit State

		Method/Soil/Condition	Resistance Factor
Bearing Resistance		Theoretical method (Munfakh et al., 2001), in clay	0.50
	φ_b	Theoretical method (Munfakh et al., 2001), in sand, using CPT	0.50
		Theoretical method (Munfakh et al., 2001), in sand, using SPT	0.45
		Semi-empirical methods (Meyerhof, 1957), all soils	0.45
		Footings on rock	0.45
		Plate Load Test	0.55
116	Ø,	Precast concrete placed on sand	0.90
F.		Cast-in-Place Concrete on sand	0.80
Sliding		Cast-in-Place or precast Concrete on Clay	0.85
		Soil on soil	0.90
	ϕ_{ep}	Passive earth pressure component of sliding resistance	0.50

10.5.3 ESTADO LÍMITE DE RESISTENCIA – ϕ – PILOTES HINCADOS - 1/2

Table 10.5.5.2.3-1—Resistance Factors for Driven Piles

Cond	ition/Resistance Determination Method	Resistance Factor
	Driving criteria established by successful static load test of at least one pile per site condition and dynamic testing* of at least two piles per site condition, but no less than 2% of the production piles	0.80
area	Driving criteria established by successful static load test of at least one pile per site condition without dynamic testing	0.75
Nominal Bearing Resistance	Driving criteria established by dynamic testing* conducted on 100% of production piles	0.75
of Single Pile—Dynamic Analysis and Static Load Test Methods, φ_{dyn}	Driving criteria established by dynamic testing,* quality control by dynamic testing* of at least two piles per site condition, but no less than 2% of the production piles	0.65
Si Marie	Wave equation analysis, without pile dynamic measurements or load test but with field confirmation of hammer performance	0.50
	FHWA-modified Gates dynamic pile formula (End of Drive condition only)	0.40
	Engineering News (as defined in Article 10.7.3.8.5) dynamic pile formula (End of Drive condition only)	0.10

^{*} Dynamic testing requires signal matching, and best estimates of nominal resistance are made from a restrike. Dynamic tests are calibrated to the static load test, when available.

10.5.3 ESTADO LÍMITE DE RESISTENCIA – ϕ – PILOTES HINCADOS - 2/2

	Condition/Resistance Determination Method	Resistance Factor
Nominal Bearing Resistance of Single Pile—Static Analysis Methods, φ _{stat}	Side Resistance and End Bearing: Clay and Mixed Soils α-method (Tomlinson, 1987; Skempton, 1951) β-method (Esrig & Kirby, 1979; Skempton, 1951) λ-method (Vijayvergiya & Focht, 1972; Skempton, 1951) Side Resistance and End Bearing: Sand Nordlund/Thurman Method (Hannigan et al., 2005) SPT-method (Meyerhof) CPT-method (Schmertmann) End bearing in rock (Canadian Geotech. Society, 1985)	0.35 0.25 0.40 0.45 0.30 0.50 0.45
Block Failure, φ _{b1}	Clay	0.60
Uplift Resistance of Single Piles, φ _{up}	Nordlund Method α-method β-method λ-method SPT-method CPT-method Static load test Dynamic test with signal matching	0.35 0.25 0.20 0.30 0.25 0.40 0.60 0.50
Group Uplift Resistance, φ _{ug}	All soils	0.50
Lateral Geotechnical Resistance of Single Pile or Pile Group	All soils and rock	1.0

10.5.3 ESTADO LÍMITE DE RESISTENCIA – ϕ – PILOTES EXCAVADOS

Table 10.5.5.2.4-1—Resistance Factors for Geotechnical Resistance of Drilled Shafts

	Method/Soil/Co	ndition	Resistance Factor
	Side resistance in clay	α-method (O*Neill and Reese, 1999)	0.45
	Tip resistance in clay	Total Stress (O'Neill and Reese, 1999)	0.40
	Side resistance in sand	β-method (O'Neill and Reese, 1999)	0.55
Nominal Axial	Tip resistance in sand	O'Neill and Reese (1999)	0.50
Compressive	Side resistance in IGMs	O'Neill and Reese (1999)	0.60
Resistance of	Tip resistance in IGMs	O'Neill and Reese (1999)	0.55
Single-Drilled Shafts, φ _{stat}	Side resistance in rock	Horvath and Kenney (1979) O'Neill and Reese (1999)	0.55
	Side resistance in rock	Carter and Kulhawy (1988)	0.50
AM AR	Tip resistance in rock	Canadian Geotechnical Society (1985) Pressuremeter Method (Canadian Geotechnical Society, 1985) O'Neill and Reese (1999)	0.50
Block Failure, φ ₆₁	Clay		0.55
Uplift Resistance of	Clay	α-method (O'Neill and Reese, 1999)	0.35
Single-Drilled Shafts, ϕ_{un}	Sand	β-method (O'Neill and Reese, 1999)	0.45
	Rock	Horvath and Kenney (1979) Carter and Kulhawy (1988)	0.40
Group Uplift Resistance, φ _{ug}	Sand and clay		0.45
Horizontal Geotechnical Resistance of Single Shaft or Shaft Group	All materials		1.0
Static Load Test (compression). φ _{load}	All Materials		0.70
Static Load Test (uplift), φ _{upload}	All Materials		0,60

PARA PILOTES AISLADOS, REDUCIR 20%.

EN TAL CASO, NO CONSIDERAR FALTA DE REDUNDANCIA (η_R)

RESISTENCIA DE PILOTES EXCAVADOS EN ARENA -O Neill & Reese (1999)

10.8.3.5.2b-Side Resistance

The nominal axial resistance of drilled shafts in cohesionless soils by the β-method shall be taken as:

$$q_{i} = \beta \sigma' \le 4.0$$
 for $0.25 \le \beta \le 1.2$ (10.8.3.5.2b-1)

in which, for sandy soils:

for N₆₀ ≥ 15:

$$\beta = 1.5 - 0.135\sqrt{z} \tag{10.8.3.5.2b-2}$$

· for No0 < 15:

$$\beta = \frac{N_{60}}{15} (1.5 - 0.135\sqrt{z}) \tag{10.8.3.5.26-3}$$

where:

 σ'_{ν} = vertical effective stress at soil layer mid-depth (ksf)

β = load transfer coefficient (dim)

z = depth below ground, at soil layer mid-depth (ft)

 N_{60} = average SPT blow count (corrected only for hammer efficiency) in the design zone under consideration (blows/ft)

Higher values may be used if verified by load tests.

Side resistance in sand	B-method	0.55
	(O'Neill and Reese, 1999)	
Tip resistance in sand	O'Neill and Reese (1999)	0.50

10.8.3.5.2c-Tip Resistance

The nominal tip resistance, q_p , in ksf, for drilled shafts in cohesionless soils by the O'Neill and Reese (1999) method shall be taken as:

for
$$N_{60} \le 50$$
, $q_p = 1.2N_{60}$ (10.8.3.5.2c-1)

where:

 N_{60} = average SPT blow count (corrected only for hammer efficiency) in the design zone under consideration (blows/ft)

The value of q_p in Eq. 10.8.3.5.2c-1 should be limited to 60 ksf, unless greater values can be justified though load test data.

Cohesionless soils with SPT-N₆₀ blow counts greater than 50 shall be treated as intermediate geomaterial (IGM) and the tip resistance, in ksf, taken as:

$$q_p = 0.59 \left[N_{60} \left(\frac{p_a}{\sigma'_v} \right) \right]^{0.8} \sigma'_v$$
 (10.8.3.5.2c-2)

where:

 p_a = atmospheric pressure (= 2.12 ksf)

 σ'_{ν} = vertical effective stress at the tip elevation of the shaft (ksf)

10.5.3 ESTADO LÍMITE DE RESISTENCIA – ϕ – MICROPILOTES

Table 10.5.5.2.5-1—Resistance Factors for Geotechnical Resistance of Axially Loaded Micropiles

Limit State	Method/ Ground Condition	Resistance Factor
	Side Resistance (Bond Resistance): Presumptive Values	0.55(1)
Compression Resistance of Single Micropile, ϕ_{stat}	Tip Resistance on Rock O'Neill and Reese (1999)	0.50
Single Wicropite, Watar	Side Resistance and Tip Resistance Load Test	Values in Table 10.5.5.2.3-1, but no greater than 0.70
Block Failure, oh	Clay	0.60
Clia	Presumptive Values	0.55(1)
Uplift Resistance of Single Micropile, φ _{tap}	Tension Load Test	Values in Table 10.5.5.2.3-1, but no greater than 0.70
Group Uplift Resistance, ϕ_{ug}	Sand & Clay	0.50

⁽¹⁾ Apply to presumptive grout-to-ground bond values for preliminary design only in Article C10.9.3.5.2.

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS - COMBINACIONES

Combinación de cargas	DC DD DW EH EV	LL	а	WA = carga hidráulica y presión del flujo de agua WS = viento sobre la estructura					Usar sólo uno por vez						
Estado límite	ES EL PS CR SH	IM CE BR PL LS	WL = v FR = ca TU = so	iento so arga de	bre la so fricción ones ger	obrecarg neradas	ja		: DT Asent	AYO!	BL	IC	ст	CV	
Evento extremo	Yp	γEQ	1,00	Manufacture of the Control of the Co	-	1,00		90		1.00	-	-	*	7	
Evento extremo II	Yo	0,50	1,00		4-/	1,00	0,500	ar	61	-	1,00	1,00	1,00	1,00	

DC = peso propio compestructurales

y agregados no estructurales

DD = fricción negativa

DW = peso propio de las sups rodamiento

e instalaciones para servicios

EH = empuje horizontal del suelo

EV = presión vertical del peso propio del suelo de relleno

ES = sobrecarga de suelo

EL = diversas tensiones residuales del proceso

constructivo

PS = fuerzas secundarias de postensado

CR = solicitaciones generadas por fluencia lenta

SH = solicitaciones generadas por contracción

LL = sobrecarga vehicular

IM = incremento por carga vehicular

dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una

embarcación

10.5.4 ESTADOS LÍMITE PARA EVENTOS EXTREMOS - ϕ

SOCAVACIÓN y otros EVENTOS EXTREMOS (INCLUIDO SISMO):

SE EVALUARÁ LA ESTABILIDAD PARA LAS CONDICIONES MODIFICADAS POR LA EROSIÓN. SE TOMARÁ ϕ = 1, SALVO PARA CONDICIÓN DE LEVANTAMIENTO DE PILOTES, DONDE SE TOMARÁ ϕ =0.80, O MENOR.

ESTAS REDUCCIONES DEBEN SER EVALUADAS CUIDADOSAMENTE PARA MÉTODOS DE DETERMINACIÓN DE Rn QUE MUESTRE UN λ MUCHO MENOR A 1, PARA NO CONSIDERAR RESISTENCIAS INFERIORES AL VALOR MEDIO (Rm)

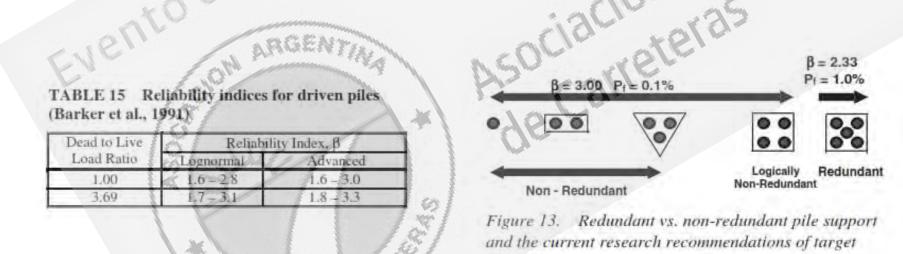
- ENCUESTAS: TIPO DE SUELOS, TIPOLOGÍAS, MÉTODOS, USOS LOCALES.
- RECOPILACIÓN DE BASES DE DATOS

TABLE 2 Summary and breakdown—drilled shafts database

Soil/Rock	Method of Construction								
	Cas	ing	Slu	пу	Dry				
Туре	Total	Skin	Total	Skin	Total	Skin			
Sand	13	6	15	4	6	1			
Clay	14	3	0	0	40	10			
Mixed Soils	23	4	12	5	13	7			
Rock	0	0	0	0	8	(0)			
Sand & Rock	4	4	7	3	20	0			
Clay & Rock	2	0	2	0	19	7			
Mixed Soils & Rock	2	1	0	0		0			
Total (256)	58	32	36	14	91	25			

Note: Total = skin + tip; Skin = side afone

TABLE 3 Driven piles database: soil type and number of cases by type of pile


Soil	Type	Numb	er of Ca	ses
Tip	Side	H-PILES	PPC	PIPE
	Clay	3	()	0
Rock	Sand	12	0	0
Kock.	Mix	6	15	-3
	Total	21	15	3
	Clay	0	0	0
Sand	Sand	17	37	20
Sand	Mix	13	- 50	19
	Total	30	87	39
	Clay	8	19	20
Chu	Sand	1	1	0
Clay	Mix	36	34	15
	Total	44	54	35
Insuffici	ent data	0	7	_1_
All case	s (338)	97	163	78

O DEFINICIÓN DE UN β OBJETIVO PARA FUNDACIONES:

CARR

 β = 2,5 a 2.7 PARA SISTEMAS CON REDUNDANCIA, β = 3.0 PARA SISTEMAS SIN REDUNDANCIA

reliability.

ANÁLISIS DE LAS PROPIEDADES Y PARÁMETROS COMO VARIABLES ALEATORIAS

TABLE 7a Correlations of soil properties from SPT

Properties	From SPT	Reference (Kulhawy & Mayne, 1990)		
ф	Peck, Hanson and Thornburn: ≈ 54 - 27.6034 exp(=0.014N')	Figure 4.12		
	Schmertmann $\phi \approx \tan^{-1} [N/(12.2 + 20.3 \sigma'/p_a')]^{0.34}$	Figure 4.13 and Equation 4.11		
6.0	Terzaghi and Peck (1967): 0.06 N	Equation 4.59		
S _u (bar)	Hara 1974: 0.29 N ^{0.72}	Equation 4.60		
OCR for clay	Mayne and Kemper ≈ 0.5 N / σ' ₀ (σ' ₀ in bar)	Figures 3.9 and 3.18		
Dr	Gibbs and Holtz's Figures	Figures 2.13 and 2.14		

Table 44. Variations in the estimated soil friction angle (d.).

100	φ _f for Granular soils							
φ _t Obtained from	D'Appolonia of Michig	Used for study						
	Bias	cov	Bias	COV				
SPT	1.00 to 1.20	0.15 to 0.20	1.00	0.20				
CPT	1.00 to 1.15	0.10 to 0.15	1.00	0.15				
Lab test	1.00 to 1.13	0.05 to 0.10	1.00	0.10				

¹Unpublished material based on Phoon et al., 1995.

 ANÁLISIS DE LAS PROPIEDADES Y PARÁMETROS COMO VARIABLES ALEATORIAS

Table 52. Summary of COVs of earth pressure coefficients

anth	cond								
$30 < \phi_i \le 40$	Konc		Raul	Raukine K _a		cine K _p			
	Range	Reasonable	Range	Reasonable	Range	Reasonable			
φ _f from Lab Test	0.20-0.22	0.20	0.12-0.17	0.15	0.12-0.17	0.15			
$\phi_{\rm f} \ {\rm from} \ {\rm CPT}$	0.22-0.26	0.25	0.17-0.23	0.20	0.19-0.23	0.20			
$\varphi_f \mathrm{from} SPT$	0.25-0.33	0.30	0.23-0.28	0.25	0.23-0.28	0.25			

ANÁLISIS DE LOS MODELOS RESISTENTES COMO VARIABLES ALEATORIAS

Table 4. 2. Demonstration Example: Statistical Analysis of Bias Resistance Data

# of data	Location	SPT-N for the Base	Base Resis (base area, A	Bias Resistance = Measured Resistance		
0	OH AF	Material	Predicted Resistance from the Design Method = N A _b	Measured Resistance from Load Test	/Predicted Resistance	
18		bpf	Kips	Kips	311	
1	Colorado	5	5	4.5	0.90	
2	New York	22.5	22.5	20	0.89	
3	Florida	15	15	12	0.80	
4	California	16.5	16.5	23.5	1.42	
5	Egypt	10	10	15	1.50	
-			60			
100	dequate #		Assuming Distribut			
			Resistance Me	1.10		
1		100000	Standard De		0.33	
		JE CA	COV	0.30		

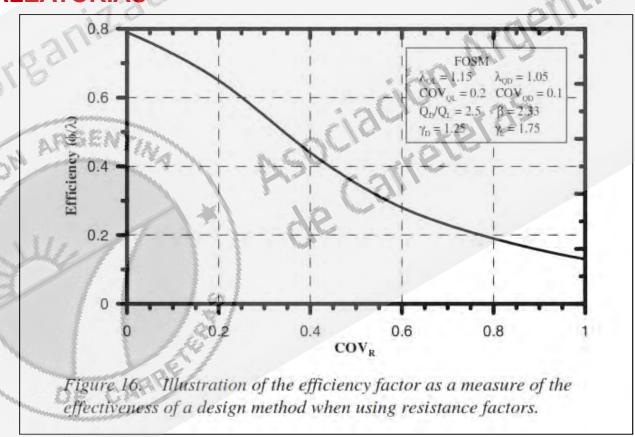

ANÁLISIS DE LOS MODELOS RESISTENTES COMO VARIABLES ALEATORIAS

TABLE 16 The performance of the driven piles' static analysis methods—statistical summ and resistance factors for data using mean ± 2 SD

Soil Type	Pile Type	N	Design Method ⁽¹⁾	Details of Method ⁽²⁾ Application	Mean	Stand. Dev.	cov
	Control of the Contro	4	β-Method	11.5 B. T&P(2)	0.61	0.37	0.61
(AC)	ENTRY	16	λ-Method	11.5B; T&P(2) 2B; T&P(5)	0.74	0.29	0.39
	H-Piles	17	α-Tomlinson	2B; T&P(2)	0.82	0.33	0.40
		16	α-API	2B; T&P(5)	0.90	0.37	0.41
		8	SPT-97 mob		1.04	0.43	0.41
		18	λ-Method	2B; Hara (5h)	0.76	0.22	0.29
	Concrete	17	α-API	2B; Hara (5h)	0.81	0.21	0.26
Clay	Piles	8	β-Method	2B; Hara (5h)	0.81	0.41	0.51
		18	α-Tomlinson	2B; Hara (5h)	0.87	0.42	0.48
		18	α-Tomlinson	2B; T&P (1)	0.64	0.32	0.50
OE		19	α-API	2B; T&P (1)	0.79	0.43	0.54
	Pipe	12	β-Method	2B; T&P (1)	0.45	0.27	0.60
	Piles	19	λ-Method	2B; T&P (1)	0.67	0.37	0.55
	MAN AND AND AND AND AND AND AND AND AND A	12	SPT-97 mob	2B; T&P (1)	0,39	0.24	0.62

 ANÁLISIS DE LA EFICIENCIA DE LOS MODELOS RESISTENTES COMO VARIABLES ALEATORIAS

DESARROLLO DE SIMULACIONES Y PROPOSICIÓN DE VALORES PARA φ

TABLE 29 Recommended resistance factors for drilled shafts

Shaft	Soil	Design	Construction	φ (resista	nce Factors)	φ/λ		
Resistance	Type	Method	Method	Redundant	Non- Redundant	Redundant	Non- Redundant	
	Sand	R&W	All	0.50	0.40	0.36	0.29	
ar Par	Danie	FHWA	7411	0.20	4	0.38	0.31	
0, , ,	Clay	FHWA	All	0.40	0.30	0.43	0.31	
Total	**********	FHWA	Slurry & Dry	0.85	0.70	0.63	0.52	
Resistance	Sand + Clay		Casing	0.65	0.50	0.63	0.52	
dilli		R&W	Slurry & Dry	0.75	0.60	0.65	0.52	
		Kæw	Casing	0.50	0.35	0.47	0.36	
	Rock	C&K	All	0.60	0.60	0.48	0.37	
	KOCK	IGM	All	0.75	0.75	0.56	0.44	
	All	FHWA	All	0.45	0.35	0.48	0.40	
Skin	Soils	R&W	All	0.43	0.00	0.42	0.33	
Resistance	Rock	C&K	Afr	0.50	0,35	0.43	0.32	
	NOCK	IGM	St. St.	0,65	0,50	0.53	0.41	

Notes: ϕ/λ = efficiency factor, evaluating the relative economic performance of each method (higher ratios

indicate a more economical solution);

 ϕ/λ values relate to the exact calculated ϕ and λ and

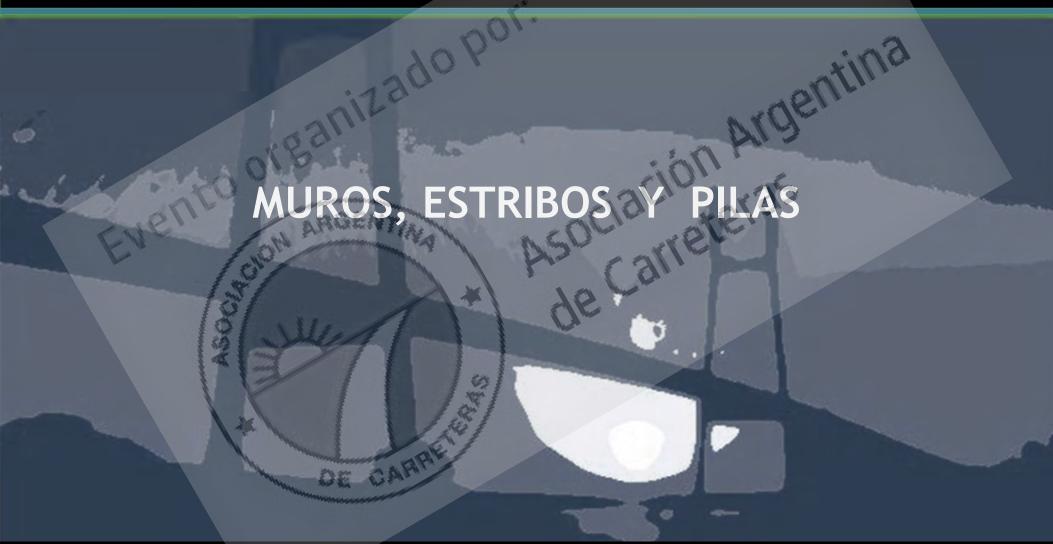
not to the assigned o values in the table.

Redundant = Five piles or more under one pile cap ($\beta = 2.33 p_f = 1.0\%$)

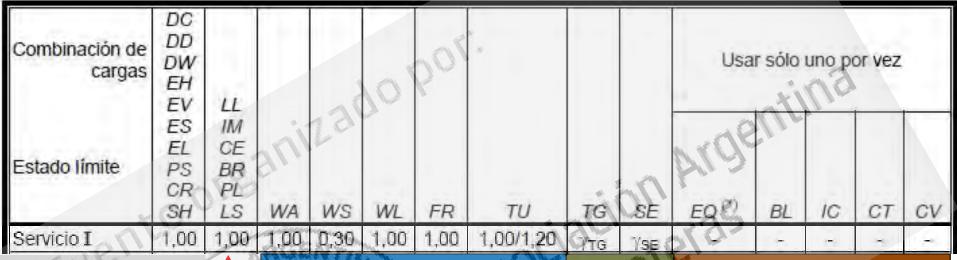
Non-Redundant = Pour or fewer piles under one pile cap ($\beta = 3.0 \text{ p}_f = 0.1\%$)


 $\lambda = \text{bias} = K_{SX} = \text{mean of measured/predicted}$

FHWA = Reese and O'Neill (1988); R&W = Reese and Wright (1977); C&K = Carter and Kulhawy (1988); IGM = O'Neill and Reese (1999).


REFERENCIAS ESENCIALES

Ante la Implementación de un Nuevo Reglamento de Puentes: CIRSOC Serie 800


Capítulo 11: Muros, Estribos y Pilas

Estados Límite y Factores de Resistencia 11-5

Estado Límite de Servicio

CR = solicit. por fluencia lenta

DD = fricción negativa

DC = peso propio de los componentes estructurales y agregados no estructurales

DW = peso propio de las superficies de rodamiento e

instalaciones para servicios

EH = empuje horizontal del suelo

EL = tensiones residuales

ES = sobrecarga de suelo

EV = presión vertical del peso propio del suelo de relleno
PS = fuerzas secundarias de

PS = fuerzas secundarias de postensado

SH = solicitaciones generadas por contracción

WA = carga hidráulica y presión del flujo de agua

WS = viento sobre la estructura

WL = viento sobre la sobrecarga

FR = carga de fricción

TU = solicitaciones generadas por temperatura uniforme

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

Ver aparte

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

CV = fuerza de colisión de una

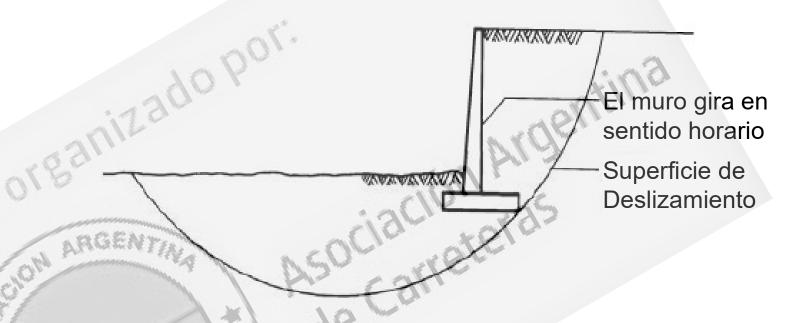
embarcación

TG = solicitaciones generadas por gradiente de

temperatura

SE = solicitaciones generadas por asentamiento

Estado Límite de Servicio


- Deformaciones absolutas
- Deformaciones relativas

OE CARRE

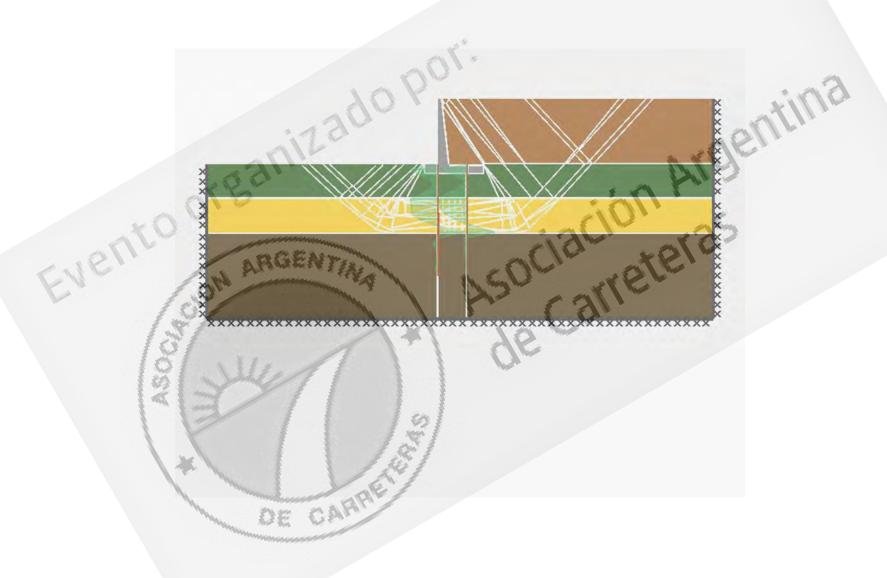
• Estabilidad Global

ESTABILIDAD GLOBAL

Debe investigarse para el Estado de Servicio I

Si hay elementos estructurales o apoyan elementos estructurales...... ϕ = 0,65

En casos simples se puede usar Bishop Modificado, Jambu Simplificado o Spencer



ESTABILIDAD GLOBAL

ESTABILIDAD GLOBAL

L de Resistencia

ANTE LA IMPLEMENTACIÓN DE UN NUEVO REGLAMENTO DE PUENTES: CIRSOC SERIE 800

Combinación de cargas	DC DD DW EH EV	LL								Usa	r sólo	uno po	or vez	
Estado límite	ES EL PS CR SH	IM CE BR PL LS	WA	ws	WL	FR	TU	TG	SE	EQ	BL	10	СТ	cv
Resistencia I (a menos que se especifique lo contrario)	Ϋ́P	1,75	1,00	-	-	1,00	0,50/1,20	77 G)/SE	195	20			

CR = solicit. por fluencia lenta

DD = fricción negativa

DC = peso propio de los componentes estructurales y agregados no estructurales

DW = peso propio de las superficies de rodamiento e instalaciones para servicios

EH = empuje horizontal del suelo

EL = tensiones residuales

ES = sobrecarga de suelo

EV = presión vertical del peso propio del suelo de relleno PS = fuerzas secundarias de

postensado

SH = solicitaciones generadas por contracción

WA = carga hidráulica y presión del flujo de agua

WS = viento sobre la estructura

WL = viento sobre la sobrecarga

FR = carga de fricción

TU = solicitaciones generadas por temperatura uniforme

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

Ver aparte EQ = carg

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo

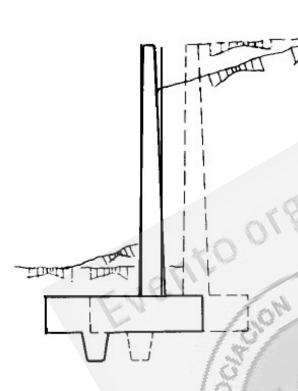
CV = fuerza de colisión de una embarcación

31115G1 5G51511

TG = solicitaciones generadas por gradiente de

temperatura

SE = solicitaciones generadas por asentamiento


Estados Límite de Resistencia

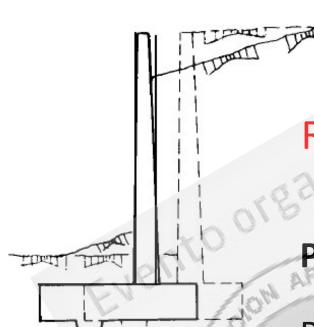
- Falla por capacidad portante
- Falla por Deslizamiento
- Pérdida de contacto por excentricidad de la carga
- Arrancamiento de anclajes y refuerzos

CARR

• Falla Estructural

$$R_R = \phi_\tau R_\tau + \phi_{ep} R_{ep}$$

R_R = Resistencia nominal al deslizamiento


 R_{τ} = Resistencia al deslizamiento del Contacto Suelo-Fundación

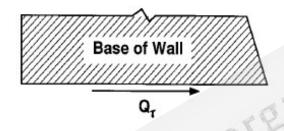
 ϕ_{τ} = Factor Reducción de Resistencia Deslizamiento Suelo-Fundación

R_{ep} = Resistencia por Empuje Pasivo

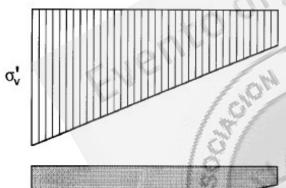
 ϕ_{ep} = Factor Reducción de Resistencia del Empuje Pasivo

$$R_R = \phi_\tau R_\tau + \phi_{ep} R_{ep}$$

 R_{τ} = Resistencia al deslizamiento del Contacto Suelo-Fundación


Para suelos friccionales:

$$R_{\tau} = V \tan \delta$$


 $V = Fuerza \ Vertical \ Total$ $tan \ \delta = tan \ \phi_f \ para \ hormig\'on \ «in situ»$ $= 0.8 \ tan \ \phi_f \ para \ prefabricados$ $\phi_f = \'Angulo \ de \ fricci\'on \ drenado \ del \ suelo$

 R_{τ} = Resistencia al deslizamiento del Contacto Suelo-Fundación

Para suelos cohesivos:

 R_{τ} = Área por tensión de contacto «q_s»

 $q_s = menor valor entre «S_u» y 0,5 σ'v$

S_{II} = cohesión no drenada

 $\sigma'v$ = tensión vertical efectiva

0.5 σ'_v

$$R_R = \phi_{\tau} R_{\tau} + \phi_{ep} R_{ep}$$

	Hormigón premoldeado sobre arena	0,90
1.400	Hormigón «in situ» sobre arena	0,80
Φτ	Hormigón premoldeado sobre arcilla	0,85
E V	Hormigón «in situ» sobre arcilla	0,90
фер	Componente empuje pasivo en deslizamiento	0,50

DE CARRET

LA POSICIÓN DE LA RESULTANTE REEMPLAZA AL «VOLCAMIENTO»

- No existe una verificación al «volcamiento»
- Se verifica que la resultante caiga dentro de una zona establecida de la base
- Esta verificación debe complementarse con la de capacidad portante

Los límites de excentricidad son:

de excentricid	ad son:	aciació	n Arge
Estados No	Suelo	2/3 Ce	ntrales
Sísmicos	Roca	9/10 Ce	entrales
Estados	Suelo	$\gamma_{EG} = 0$	2/3 Centrales
Sísmicos	y Roca	γEG = 1	8/10 Centrales

Eventos Extremos

Combinación de cargas	DC DD DW EH EV	LL								Usa	r sólo	uno p	or vez	
Estado límite	ES EL PS CR SH	IM CE BR PL LS	WA	WS	WL	FR	TU	TG	SE	EQ	BL	10	CT	cv
Evento extremo	Yp.	YEQ	1,00	121	p(- <	1,00	-	-	17:	1,00	8	-	100	-
Evento extremo	Yp	0,50	1,00	Manufacture of the Control of the Co	9	1,00		36		435	1,00	1,00	1,00	1,00

CR = solicit. por fluencia lenta

DD = fricción negativa

DC = peso propio de los componentes estructurales y agregados no estructurales

DW = peso propio de las superficies de rodamiento e instalaciones para servicios

EH = empuje horizontal del suelo

EL = tensiones residuales

ES = sobrecarga de suelo

EV = presión vertical del peso propio del suelo de relleno

PS = fuerzas secundarias de postensado

SH = solicitaciones generadas por contracción

WA = carga hidráulica y presión del flujo de aqua

WS = viento sobre la estructura

WL = viento sobre la sobrecarga

FR = carga de fricción

TU = solicitaciones generadas por temperatura uniforme

LL = sobrecarga vehicular

IM = incremento por carga vehicular dinámica

CE = fuerza centrífuga de los vehículos

BR = fuerza de frenado de los vehículos

PL = sobrecarga peatonal

LS = sobrecarga viva

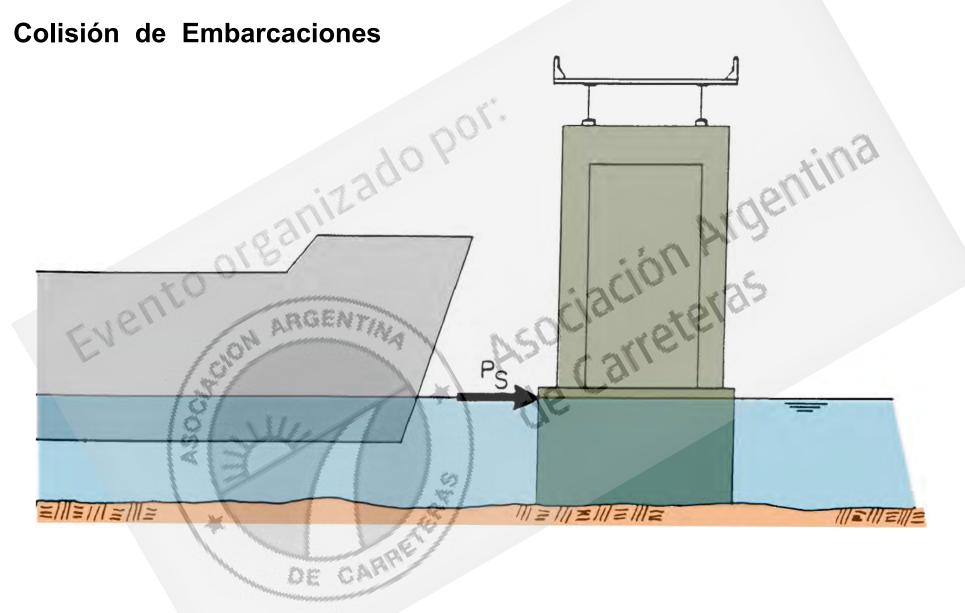
Ver aparte

EQ = carga sísmica (a definir por el INPRES)

BL = cargas explosivas

IC = carga de hielo

CT = fuerza de colisión de un vehículo


CV = fuerza de colisión de una

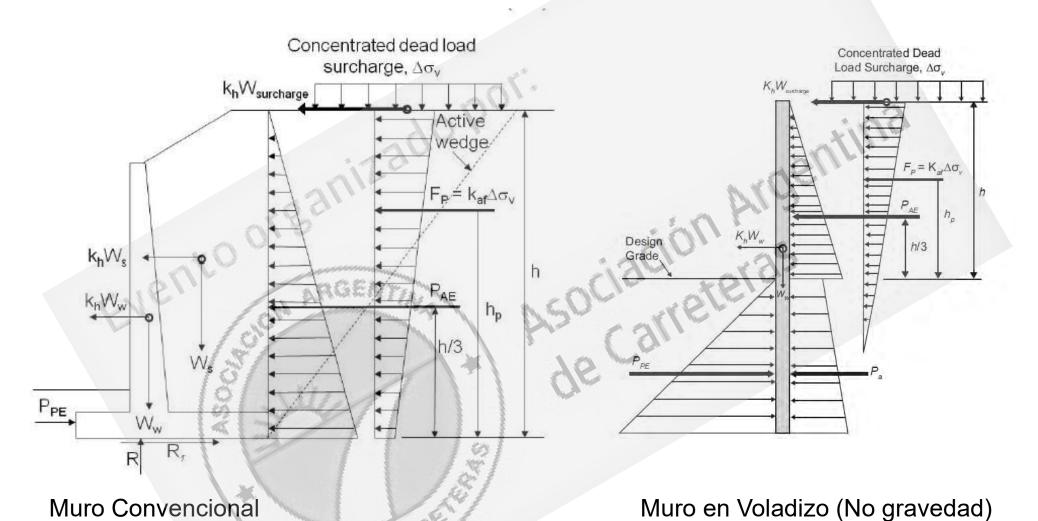
embarcación

TG = solicitaciones generadas por gradiente de temperatura

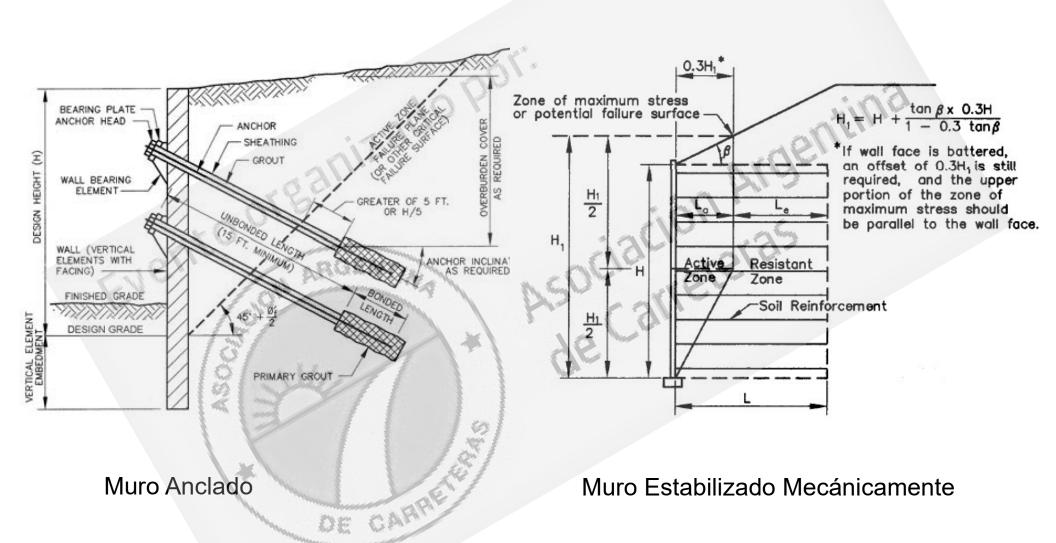
SE = solicitaciones generadas por asentamiento

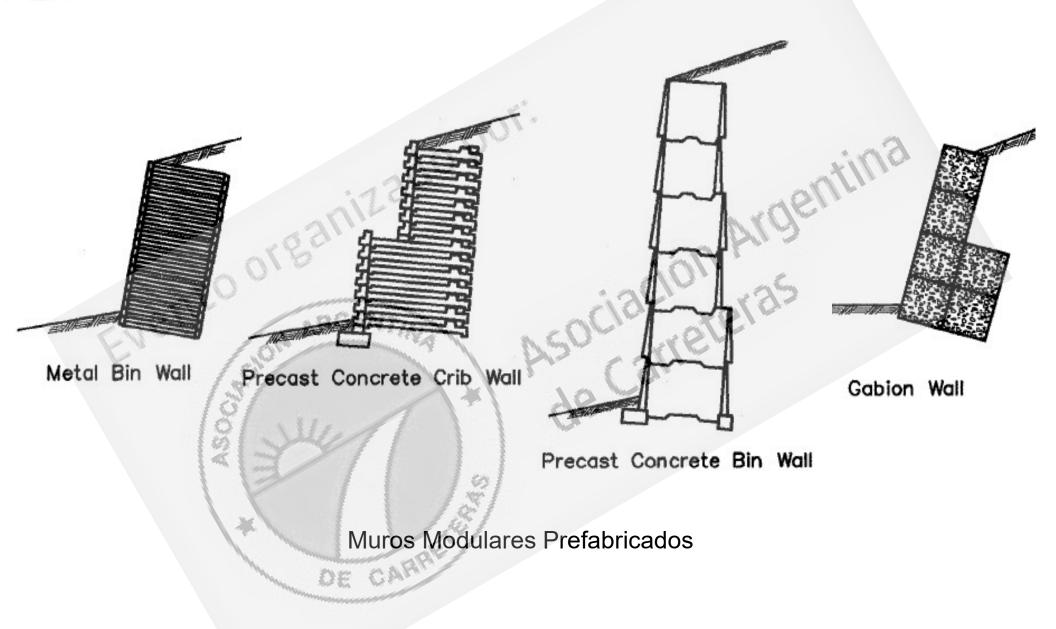
Capítulo 11: Muros, Estribos y Pilas

DE CARRE

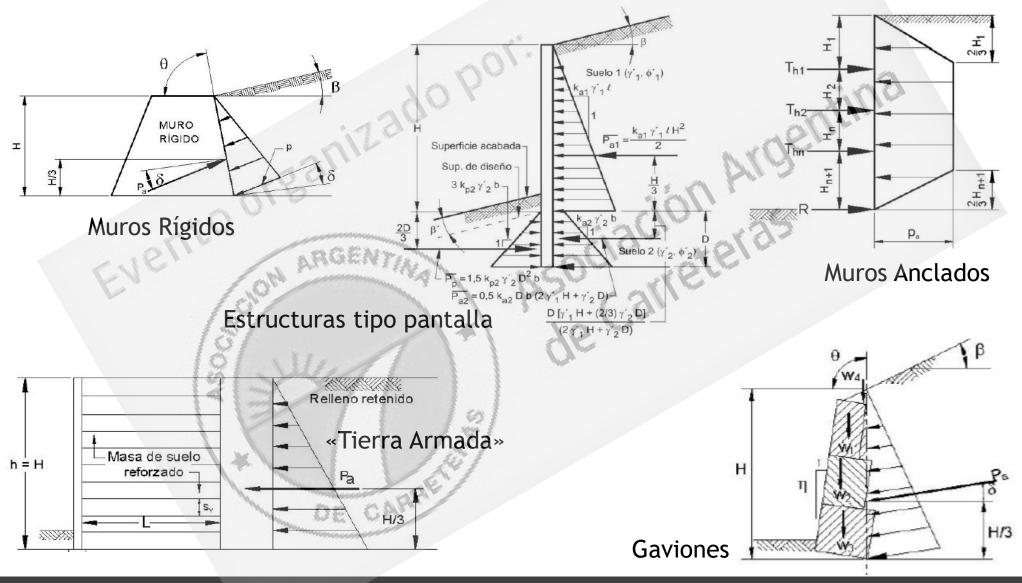

0	11-6	Estribos y Muros de Sostenimiento Convencionale
0	11-7	Pilas
0	11-8	Muros en Voladizo (no de gravedad)
0	11-9	Muros Anclados
0	11-10	Muros con Rellenos Estabilizados Mecánicamente
0	11-11	Muros Modulares Prefabricados
0	A11.3	Cálculo del Empuje Activo Sísmico

TIPOLOGÍAS PARA MUROS Y ESTRIBOS LE TITILIDA


OE CARRETE



DE CARRE



- Qué provee el Reglamento 801 en el Capítulo 3
- C3.11. **EMPUJE DEL SUELO**: *EH, ES, LS* y *DD* 3-43
- C3.11.5.6. Empujes Laterales del Suelo para Muros Tipo Pantalla 3-49
- C3.11.5.7. Empujes Aparentes del Suelo para Muros Anclados 3-50
- C3.11.5.8. Empujes Laterales del Suelo para Muros de Tierra Estabilizada Mecánicamente 3-51
- C3.11.5.9. Empujes Laterales del Suelo para Muros Modulares prefabricados 3-52

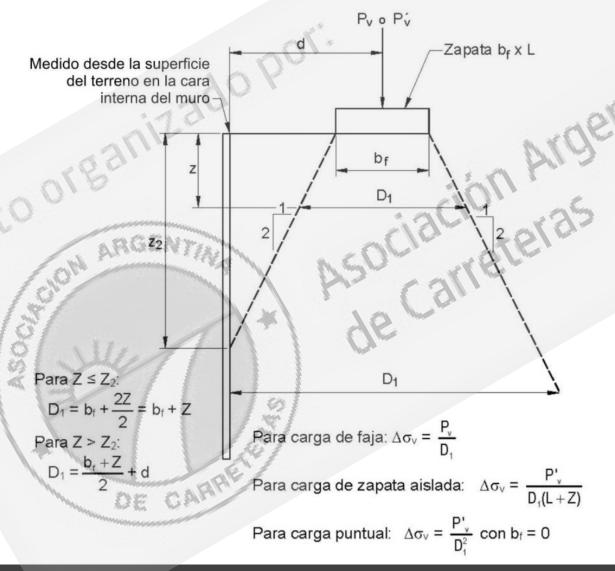
EJEMPLOS DE CARGAS: EMPUJES SOBRE ESTRUCTURAS DE CONTENCIÓN

- C3.11.6. **Sobrecargas**: *ES* y *LS* 3-53
- C3.11.6.1. Sobrecarga Uniforme (*ES*) 3-53
- C3.11.6.2. Cargas Puntuales, Lineales y de Faja (ES) Muros Restringidos contra el Movimiento 3-53

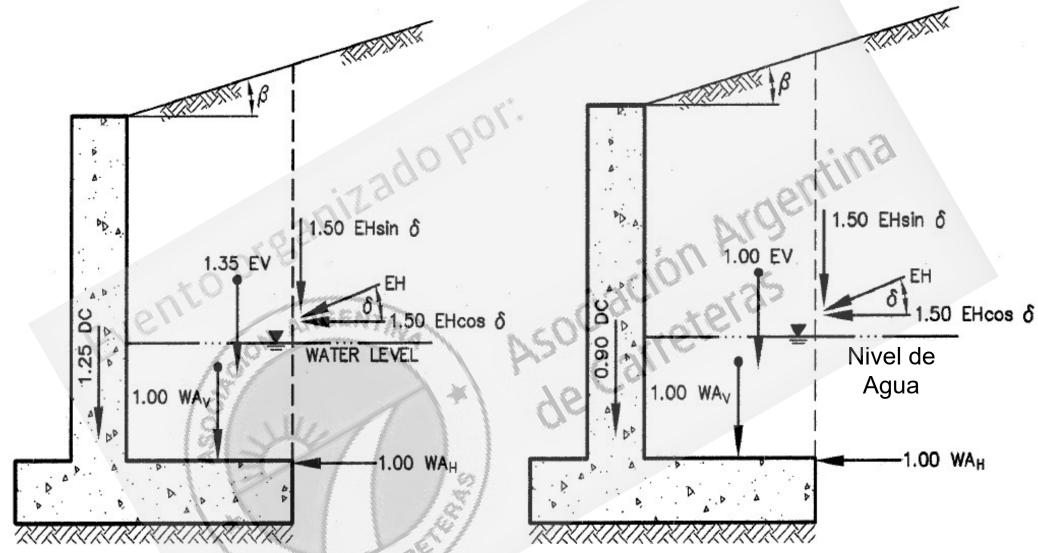
CARR

Ejemplo efecto sobrecarga sobre terraplén (rígido)

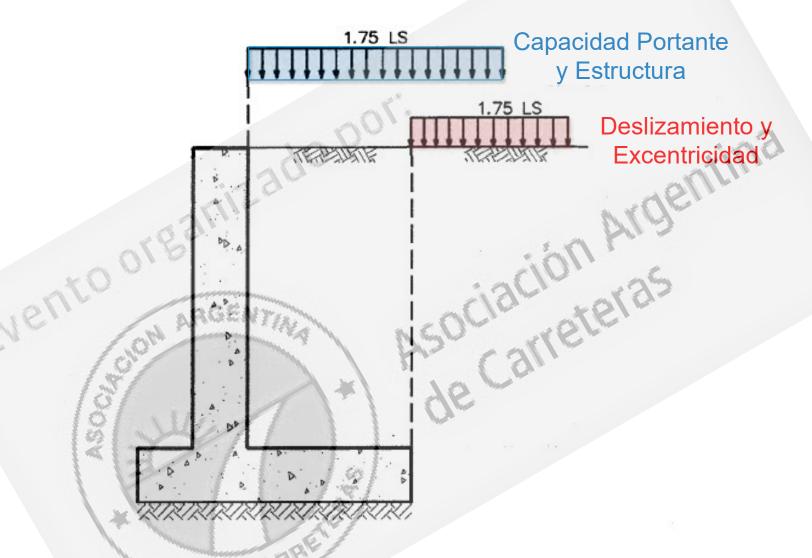
Figura 3.11.6.2-4 — Empuje horizontal sobre un muro provocado por una carga lineal de longitud finita perpendicular al muro



- C3.11.6. **Sobrecargas**: *ES* y *LS* 3-53
- C3.11.6.1. Sobrecarga Uniforme (*ES*) 3-53
- C3.11.6.2. Cargas Puntuales, Lineales y de Faja (ES) Muros Restringidos contra el Movimiento 3-53
- C3.11.6.3. Cargas de Faja (ES) Muros Flexibles 3-54


CARR

Ejemplo efecto sobrecarga sobre terraplén (flexible)



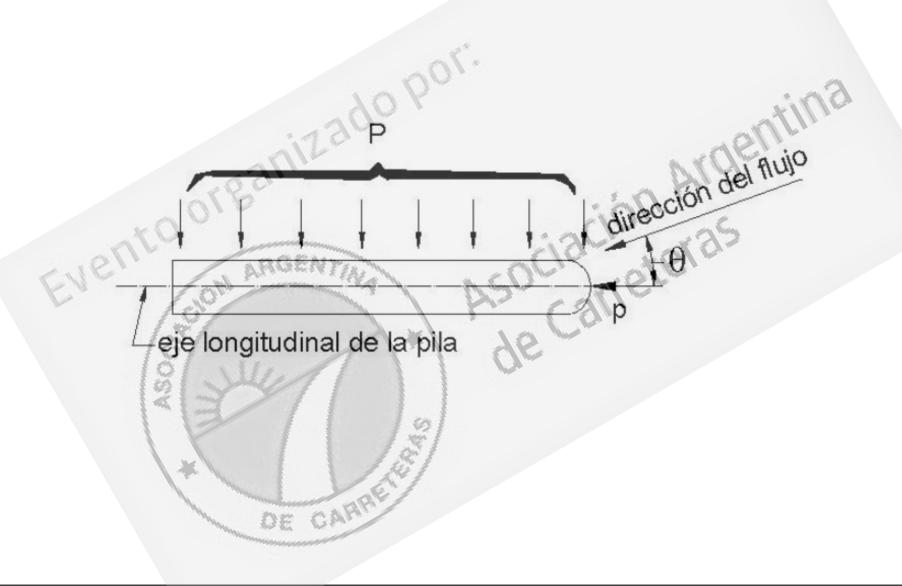
Estructura Convencional: Factores de Carga para Capacidad de Carga

Estructura Convencional: Factores de Carga para Deslizamiento y Excentricidad

Estructura Convencional: Ubicación de la Sobrecarga Vehicular

Qué provee el Reglamento 801 en el Apéndice A.11: Diseño Sísmico de Estructuras de Contención

- Método tradicional de Mononobe-Okabe
- Método de Mononobe-Okabe modificado para considerar cohesión
- Método de Equilibrio Límite Generalizado
- Métodos para considerar la aceleración actuante sobre la estructura de hormigón

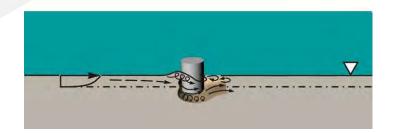

- C3.7. CARGAS HIDRÁULICAS: WA 3-26
- C3.7.3. Acciones producidas por una Corriente de Agua 3-26
- C3.7.4. Acciones producidas por el Oleaje 3-28

CARR

PRESIONES POR FLUJO DE AGUA



- C3.7. CARGAS HIDRÁULICAS: WA 3-26
- C3.7.3. Acciones producidas por una Corriente de Agua 3-26
- C3.7.4. Acciones producidas por el Oleaje 3-28
- C3.7.5. Cambios en las Condiciones de Fundación debidos al Estado Límite de Socavación 3-28


CRITERIOS PARA EL MANEJO DE LOS EFECTOS DE SOCAVACIÓN

Socavación en Pilas y Estribos

Socavación en Pilas y Estribos

NCHRP Web-Only Document 83 (Project 24-14): Contractor's Final Report and Appendix A

Scour at Contracted Bridges

Prepared for

National Cooperative Highway Research Program

TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

DRAFT FINAL REPORT

ESTIMATION OF SCOUR DEPTH AT BRIDGE ABUTMENTS

NCHRP 24-20

Robert Ettema, Tatsuaki Nakato, and Marian Muste The University of Iowa Iowa City, Iowa 52242 USA

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

CARRI

Scour at Wide Piers and Long Skewed Piers

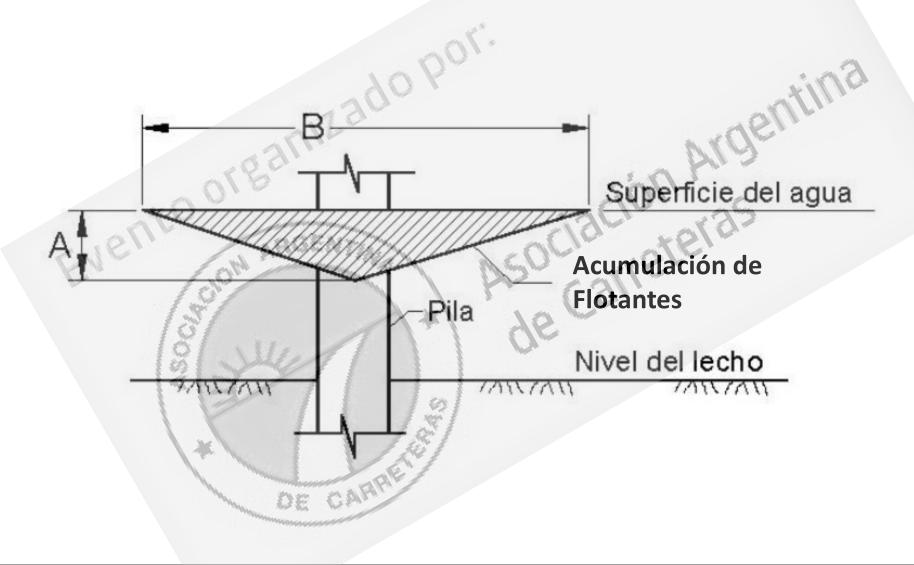
Socavación en Pilas y Estribos

CARRE

April 2012 Publication No. FHWA-HIF-12-003

Hydraulic Engineering Circular No. 18

Evento organizado por Evaluating Scour at Bridges
Fifth Edition


U.S. Department of Transportation Federal Highway Administration

- C3.7. CARGAS HIDRÁULICAS: WA 3-26
- C3.7.3. Acciones producidas por una Corriente de Agua 3-26
- C3.7.4. Acciones producidas por el Oleaje 3-28
- C3.7.5. Cambios en las Condiciones de Fundación debidos al Estado Límite de Socavación 3-28
- C3.9.2. Fuerzas de Hielo Dinámicas sobre las Pilas 3-35
- C3.9.3. Cargas de Hielo Estáticas sobre Pilas de Puente 3-40

ACUMULACIÓN DE FLOTANTES

Bibliografía específica de apoyo gratuita y actualizada:

- **National Cooperative Highway Research Program (NCHRP)**
- Federal Highway Administration (FHWA)
- **Departments of Transportation (Vialidades)**

